TY - JOUR A1 - Weise, Frank A1 - von Werder, Julia A1 - Manninger, Tanja A1 - Maier, Bärbel A1 - Fladt, Matthias A1 - Simon, Sebastian A1 - Gardei, Andre A1 - Höhnel, Desirée A1 - Pirskawetz, Stephan A1 - Meng, Birgit T1 - A multiscale and multimethod approach to assess and mitigate concrete damage due to alkali-silica reaction JF - Advanced engineering materials N2 - Alkali-silica reaction (ASR) is a chemical reaction within concrete which can lead over time to cracking and spalling. Due to the complexity of the problem, it still causes damage to concrete constructions worldwide. The publication aims to illustrate the interdisciplinary research of the German Federal Institute for Materials Research and Testing (BAM) within the last 20 years, considering all aspects of ASR topics from the macro to the micro level. First, methods for characterization and assessment of ASR risks and reaction products used at BAM are explained and classified in the international context. Subsequently the added value of the research approach by combining different, preferably nondestructive, methods across all scales is explained using specific examples from a variety of research projects. Aspects covered range from the development of new test-setups to assess aggregate reactivity, to analysis of microstructure and reaction products using microscopical, spectroscopical and X-ray methods, to the development of a testing methodology for existing concrete pavements including in-depth analysis of the visual damage indicator and the de-icing salt input using innovative testing techniques. Finally, research regarding a novel avoidance strategy that makes use of internal hydrophobization of the concrete mix is presented. KW - Mitigation strategies KW - Concrete KW - Damage analysis KW - Alkali silica reaction KW - Road pavement KW - Accelerated testing KW - Non-destructive testing KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:101:1-2022052515100075090235 DO - https://doi.org/10.1002/adem.202101346 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 36 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition JF - Advanced engineering materials N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kingsbery, Phillip A1 - Stephan-Scherb, Christiane T1 - Effect of KCl deposits in high‐temperature corrosion on chromium‐rich steels in SO2‐containing atmosphere JF - Materials and corrosion N2 - High‐temperature corrosion was studied under multiple chemical loads on ferritic‐austenitic model alloys (Fe–13Cr, Fe–18Cr–12Ni, and Fe‐25Cr–20Ni) with KCl deposit under 0.5% SO2/99.5% Ar gas atmosphere at 560°C. Postexposure characterization was done by X‐ray diffraction and scanning electron microscopy. In a pure SO2/Ar environment a protective Cr2O3 scale was formed by all samples. The introduction of KCl deposits causes the scale to be nonprotective and multilayered, consisting of CrS, FeS, Cr2O3, Fe3O4, and Fe2O3. The impact of the microstructure and alloying elements is discussed. KW - High‐temperature corrosion KW - KCl KW - Microstructure KW - SO2 KW - Steel alloy PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-543056 DO - https://doi.org/10.1002/maco.202112901 VL - 73 IS - 5 SP - 758 EP - 770 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54305 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Polatidis, E. A1 - Čapek, J. A1 - Mohr, Gunther A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Luzin, V. A1 - Bruno, Giovanni T1 - Fundamentals of diffraction-based residual stress and texture analysis of PBF-LB Inconel 718 N2 - Laser powder bed fusion (PBF-LB/M) of metallic alloys is a layer wise additive manufacturing process which provides significant scope for more efficient designs of components, benefiting performance and weight, leading to efficiency improvements for various sectors of industry. However, to benefit from these design freedoms, knowledge of the high produced induced residual stress and mechanical property anisotropy associated with the unique microstructures is critical. X-ray and neutron diffraction are considered the benchmark for non-destructive characterization of surface and bulk internal residual stress. The latter, characterized by the high penetration power in most engineering alloys, allows for the use of diffraction angle close to 90° enabling a near cubic sampling volume to be specified. However, the complex microstructures of columnar growth with inherent crystallographic texture typically produced during PBF-LB/M of metallics present significant challenges to the assumptions typically required for time efficient determination of residual stress. These challenges include the selection of an appropriate set of diffraction elastic constants and a representative strain-free reference for the material of interest. In this presentation advancements in the field of diffraction-based residual stress analysis of L-PBF Inconel 718 will be presented. The choice of an appropriate set of diffraction-elastic constants depending on the underlying microstructure will be described. T2 - MLZ User Meeting 2022 CY - Munich, Germany DA - 08.12.2022 KW - Diffraction KW - Residual Stress KW - Microstructure KW - Texture KW - Mechanical behavior PY - 2022 AN - OPUS4-56804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diewald, F. A1 - Epple, Niklas A1 - Kraenkel, T. A1 - Gehlen, C. A1 - Niederleithinger, Ernst T1 - Impact of External Mechanical Loads on Coda Waves in Concrete JF - Materials N2 - During their life span, concrete structures interact with many kinds of external mechanical loads. Most of these loads are considered in advance and result in reversible deformations. Nevertheless, some of the loads cause irreversible, sometimes unnoticed changes below the macroscopic scale depending on the type and dimension of the impact. As the functionality of concrete structures is often relevant to safety and society, their condition must be known and, therefore, assessed on a regular basis. Out of the spectrum of non-destructive monitoring methods, Coda Wave Interferometry using embedded ultrasonic sensors is one particularly sensitive technique to evaluate changes to heterogeneous media. However, there are various influences on Coda waves in concrete, and the interpretation of their superimposed effect is ambiguous. In this study, we quantify the relations of uniaxial compression and uniaxial tension on Coda waves propagating in normal concrete. We found that both the signal correlation of ultrasonic signals as well as their velocity variation directly reflect the stress change in concrete structures in a laboratory environment. For the linear elastic range up to 30% of the strength, we calculated a velocity variation of −0.97‰/MPa for compression and 0.33%/MPa for tension using linear regression. In addition, these parameters revealed even weak irreversible changes after removal of the load. Furthermore, we show the time-dependent effects of shrinkage and creep on Coda waves by providing the development of the signal parameters over time during half a year together with creep recovery. Our observations showed that time-dependent material changes must be taken into account for any comparison of ultrasonic signals that are far apart in time. The study’s results demonstrate how Coda Wave Interferometry is capable of monitoring stress changes and detecting even small-size microstructural changes. By indicating the stated relations and their separation from further impacts, e.g., temperature and moisture, we anticipate our study to contribute to the qualification of Coda Wave Interferometry for its application as an early-warning system for concrete structures. KW - Ultrasound KW - Coda Wave Interferometry (CWI) KW - Mechanical Load KW - Microstructure KW - Concrete PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556878 DO - https://doi.org/10.3390/ma15165482 SN - 1996-1944 VL - 15 IS - 16 SP - 1 EP - 15 PB - MDPI AN - OPUS4-55687 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gook, S. A1 - Midik, A. A1 - Biegler, M. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Joining 30 mm Thick Shipbuilding Steel Plates EH36 Using a Process Combination of Hybrid Laser Arc Welding and Submerged Arc Welding JF - Journal of Manufacturing and Materials Processing N2 - This article presents a cost-effective and reliable method for welding 30 mm thick sheets of shipbuilding steel EH36. The method proposes to perform butt welding in a two-run technique using hybrid laser arc welding (HLAW) and submerged arc welding (SAW). The HLAW is performed as a partial penetration weld with a penetration depth of approximately 25 mm. The SAWis carried out as a second run on the opposite side. With a SAWpenetration depth of 8 mm, the weld cross-section is closed with the reliable intersection of both passes. The advantages of the proposed welding method are: no need for forming of the HLAW root; the SAW pass can effectively eliminate pores in the HLAWroot; the high stability of the welding process regarding the preparation quality of the weld edges. Plasma cut edges can be welded without lack of fusion defects. The weld quality achieved is confirmed by destructive tests. KW - Shipbuilding steel KW - Hybrid laser arc welding KW - Submerged arc welding KW - Hardness KW - Bending test KW - Two-run welding technique KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556090 DO - https://doi.org/10.3390/jmmp6040084 SN - 2504-4494 VL - 6 IS - 4 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-55609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in a high- and a medium-entropy alloy due to TIG and friction stir welding JF - Journal of manufacturing and materials processing N2 - The new alloying concept of multi-element systems with defined entropy (HEA—high-entropy alloy; MEA—medium-entropy alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA systems. Thus, primarily the production and resulting microstructures of HEA, as well as its properties, have been investigated so far. Furthermore, processing is a main issue in transferring HEA systems from the laboratory to real components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: tungsten inert gas (TIG) welding and solid-state friction stir welding (FSW). As a pathway for the application of HEA in this investigation, for the first time, residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in, and transverse to, the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 260 MPa in the weld zone. KW - High entropy alloy KW - Welding KW - Residual stresses KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567039 DO - https://doi.org/10.3390/jmmp6060147 SN - 2504-4494 VL - 6 IS - 6 SP - 1 EP - 11 PB - MDPI CY - Basel AN - OPUS4-56703 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Richter, Tim A1 - Schröpfer, Dirk A1 - Rhode, Michael T1 - Residual stresses in near-component specimens of a high and a medium entropy alloy due to tig and friction stir welding N2 - The new alloying concept of multi-element systems with defined entropy (HEA - High Entropy Alloy or MEA - Medium Entropy Alloy) is gaining increasing importance in materials research. Significantly improved properties or combinations of properties are shown by some HEA/MEA-systems, which have the potential to substitute conventional alloys such steels and are therefore promising for a wide range of applications, e.g., overcome of the trade-off between high strength and ductility. Thus, primarily the production and resulting microstructures of HEA as well as properties have been investigated so far. Furthermore, processing is a main issue to transfer HEA systems from the laboratory to real components, e.g., for highly stressed components. Since welding is the most important joining process for metals, it is crucial to investigate the influence of welding processing on these material properties to guarantee component integrity. Welding leads to residual stresses, which significantly affect the component integrity. Only a very few studies on the effect of welding on residual stresses in HEA and MEA weld joints are available so far. Hence, the focus of this study is the residual stress formation and distribution in a CoCrFeMnNi HEA and ternary CoCrNi MEA using two different welding processes: Tungsten Inert Gas (TIG) welding and soldi-state Friction Stir Welding (FSW). As a pathway for application of HEA in this investigation for the first time residual stress analyses in realistic near-component specimens were performed. The residual stresses were determined by X-ray diffraction (XRD) on the surfaces of top and root weld side. The results were correlated with the local welding microstructures. The results show that both FSW and TIG generate significant tensile residual stresses on the weld surfaces in and transverse to the welding direction. In the case of FSW of the CoCrFeMnNi HEA, the longitudinal residual stresses are in the range of the yield strength of approx. 300 MPa in the weld zone. T2 - OVGU-Kolloquium (BMDK des IWF) CY - Online meeting DA - 19.05.2022 KW - High Entropy Alloy KW - Welding KW - Residual stresses KW - Microstructure PY - 2022 AN - OPUS4-56671 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -