TY - JOUR A1 - Weise, Frank A1 - von Werder, Julia A1 - Manninger, Tanja A1 - Maier, Bärbel A1 - Fladt, Matthias A1 - Simon, Sebastian A1 - Gardei, Andre A1 - Höhnel, Desirée A1 - Pirskawetz, Stephan A1 - Meng, Birgit T1 - A multiscale and multimethod approach to assess and mitigate concrete damage due to alkali-silica reaction N2 - Alkali-silica reaction (ASR) is a chemical reaction within concrete which can lead over time to cracking and spalling. Due to the complexity of the problem, it still causes damage to concrete constructions worldwide. The publication aims to illustrate the interdisciplinary research of the German Federal Institute for Materials Research and Testing (BAM) within the last 20 years, considering all aspects of ASR topics from the macro to the micro level. First, methods for characterization and assessment of ASR risks and reaction products used at BAM are explained and classified in the international context. Subsequently the added value of the research approach by combining different, preferably nondestructive, methods across all scales is explained using specific examples from a variety of research projects. Aspects covered range from the development of new test-setups to assess aggregate reactivity, to analysis of microstructure and reaction products using microscopical, spectroscopical and X-ray methods, to the development of a testing methodology for existing concrete pavements including in-depth analysis of the visual damage indicator and the de-icing salt input using innovative testing techniques. Finally, research regarding a novel avoidance strategy that makes use of internal hydrophobization of the concrete mix is presented. KW - Mitigation strategies KW - Concrete KW - Damage analysis KW - Alkali silica reaction KW - Road pavement KW - Accelerated testing KW - Non-destructive testing KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:101:1-2022052515100075090235 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 36 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nolze, Gert A1 - Payton, E. A1 - Winkelmann, Aimo T1 - Advanced EBSD Pattern Interpretation through Iterative Post-Processing N2 - Since the BSE signal depends on many factors, like the chemistry of the phase and the acceleration voltage, the size and position of the detector array is (slightly) different from phase to phase so that an (iterative) post-processing of the stored patterns is highly recommended. The derived BSE signal can be used for phase assignment in high resolution and high speed maps when EBSD fails and/or EDS (energy dispersive spectroscopy) needs too much time for a suitable and parallel signal acquisition. KW - Electron backscatter diffraction KW - Phase identification KW - Microstructure KW - SEM PY - 2013 U6 - https://doi.org/10.1017/S1431927613005631 VL - 19 IS - Suppl. 2 SP - 728 EP - 729 AN - OPUS4-37986 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - Assessing the safety of new technologies: Summary of Project AGIL N2 - In Additive Manufacturing everybody is talking about Free Form, Unconventional Design, Re-thinking Components, “Think out of the box”. However, there are a few outstanding question: a) What are the material properties ? They certainly differ from literature values for conventional materials; b) How about the microstructure? It is different from conventional materials. Does it stay so with ageing? How does it form? c) Do we properly take residual stress into account? We often blame them for our ignorance about failure scenarios. d) Do we apply tailored heat treatments? Very often, we follow conventional schedules… This talk describes the summary of the efforts carried out within the BAM Project AGIL. At BAM, we aimed to thoroughly investigate the microstructure and how it evolves as a function of load and temperature (service), to determine the material properties after different process and service conditions, to properly determine residual stress and the way it impacts mechanical properties and component performance, to properly quantify the impact of (unavoidable?) defects, and to determine heat treatments tailored to the process-specific material (stress relieve, microstructure homogenization etc.). The Project AGIL was and is intimately coupled with the project ProMoAM, dealing with online monitoring of AM processes. T2 - Workshop In-situ Monitoring and Microstructure Development in Additive Manufactured Alloys CY - Online meeting DA - 19.04.2021 KW - Mechanical properties KW - Additive manufacturing KW - Residual Stress KW - Microstructure KW - Fatigue KW - Creep PY - 2021 AN - OPUS4-52581 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Lei A1 - Kannengießer, Thomas T1 - Austenite grain growth and microstructure control in simulated heat affected zones of microalloyed HSLA steel N2 - The roles of microalloying niobium, titanium and vanadium for controlling austenite grain growth, microstructure evolution and hardness were investigated at different simulated heat affected zones (HAZ) for high strength low alloy (HSLA) S690QL steel. High resolution FEG-SEM has been used to characterize fine bainitic ferrite, martensite and nanosized second phases at simulated coarse and fine grain HAZs. It was found that for Ti bearing steel (Ti/N ratio is 2) austenite grain had the slowest growth rate due to the presence of most stable TiN. The fine cuboidal particles promoted intragranular acicular ferrite (IGF) formation. Nb bearing steel exhibited relatively weaker grain growth retardation compared with titanium bearing steels and a mixed microstructure of bainite and martensite was present for all simulated HAZs. IGF existed at coarse grain HAZ of Ti+V bearing steel but it was totally replaced by bainite at fine grain HAZs. Hardness result was closely related to the morphology of bainitic ferrite, intragranular ferrite and second phases within ferrite. The microstructure and hardness results of different simulated HAZs were in good agreement with welded experimental results. KW - Hardness measurement KW - Microstructure KW - Microalloyed steel KW - Welding KW - Grain growth PY - 2014 U6 - https://doi.org/10.1016/j.msea.2014.06.106 SN - 0921-5093 VL - 613 SP - 326 EP - 335 PB - Elsevier B.V. AN - OPUS4-36520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evans, Alexander T1 - Avoid living dangerously: non-destructive characterization of AM parts from powder to end-of-life N2 - The freeform and the revolutionary design possibilities offered by additive manufacturing have skyrocketed the amount of optimization studies in the realm of engineering, and metallic additive manufactured parts are becoming a reality in industry. Not surprisingly, this has not been paralleled by a similar enthusiastic wave in the realm of materials science, and still very little is known about AM materials properties. This has the consequence that, typically, conventional materials properties are still used in design and even in simulations. lt is necessary to dig a lot deeper than at present, in order to understand these new materials classes, and in particular their microstructure and their intemal stresses, largely different from their cast or wrought companions. T2 - ISAM Konferenz 2019 CY - Dresden, Germany DA - 29.01.2019 KW - Computed Tomography KW - Microstructure KW - Metals KW - Additive Manufacturing PY - 2019 AN - OPUS4-47331 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bruno, Giovanni T1 - Brittle Materials in Mechanical Extremes N2 - The goal of the Special Issue “Brittle Materials in Mechanical Extremes” was to spark a discussion of the analogies and the differences between different brittle materials, such as, for instance, ceramics and concrete. Indeed, the contributions to the Issue spanned from construction materials (asphalt and concrete) to structural ceramics, reaching as far as ice. The data shown in the issue were obtained by advanced microstructural techniques (microscopy, 3D imaging, etc.) and linked to mechanical properties (and their changes as a function of aging, composition, etc.). The description of the mechanical behavior of brittle materials under operational loads, for instance, concrete and ceramics under very high temperatures, offered an unconventional viewpoint on the behavior of brittle materials. This is not at all exhaustive, but a way to pave the road for intriguing and enriching comparisons. KW - Microcracking KW - Ceramics KW - Concrete KW - Asphalt KW - Mechanicalproperties KW - Microstructure KW - Strength PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514558 VL - 13 IS - 20 SP - 4610 PB - MDPI CY - Basel AN - OPUS4-51455 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Birgit A1 - Simon, Sebastian A1 - Sigmund, Sandra A1 - Ziemann, M. A. A1 - von Werder, Julia T1 - Characterization of Alkali-Silica Reaction Products by means of Raman Spectroscopy before and after Application of Accelerated Tests N2 - Alkali silica reaction (ASR) is a major concrete durability problem resulting in significant maintenance and reconstruction costs for concrete infrastructures all over the world. To determine whether an aggregate is potentially reactive, accelerated concrete tests are used. Aim of this study is the chemical and microstructural characterization of ASR-products formed under the performance conditions of motorway pavements and during subsequent tests on the remaining ASR susceptibility. Samples were taken from concrete motorway pavements. Some of the samples already showed first indications for beginning damages whereas others showed deteriorations only after applying a performance testing procedure for the estimation of future risk of ASR damage. In a first step ASR-products were identified by polarized light microscopy in thin sections. The reaction products where then analyzed by Raman Spectroscopy and finally the chemical composition of the ASR-products was identified by SEM with EDX. The results indicate that most reaction products show an increasing Ca/Si-ratio with progressive crack length. If an ASR-product develops inside an aggregate and moves through the cement paste, it has a high (Na+K)/Si-ratio at the beginning which decreases with increasing distance from its place of origin. The Raman spectra of the ASR-products are characterized by two broad bands indicating specific Q-species of different amorphous gel networks. Within the scope of the analysis distinctions in the microstructure and the chemical composition of the ASR-gels were detected relating to various conditions of accelerated testing. T2 - 15th International Congress on Chemistry of Cement CY - Prague, Czech Republic DA - 16.09.2019 KW - Alkali-silica reaction KW - Raman microscopy KW - Microstructure KW - Concrete motorway pavements KW - Performance test PY - 2019 AN - OPUS4-49527 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542262 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rockenhäuser, Christian A1 - Schriever, Sina A1 - von Hartrott, P. A1 - Piesker, Benjamin A1 - Skrotzki, Birgit T1 - Comparison of long-term radii evolution of the S-phase in aluminum alloy 2618A during ageing and creep N2 - A study was made on the effect of creep loading on the precipitate radii evolution of the aluminum alloy 2618A. The overageing process of the alloy was investigated under load at a temperature of 190 °C with stresses between 79 and 181 MPa and compared to stress free isothermal ageing. The precipitates responsible for strength were characterized using dark-field transmission electron microscopy (DFTEM). This allows the experimental Determination of radii distributions of the rod-shaped Al2CuMg precipitates and the evaluation regarding their mean precipitate radius. It was found that the mean precipitate radius enables the comparison of the different microstructural conditions of crept and uncrept samples. The mean precipitate radii of the samples experiencing creep are significantly higher than those of undeformed samples. It was shown that the acquired radii distributions are viable to determine averaged particle radii for comparison of the aged samples. A ripening process including pipe diffusion along dislocations describes the data on coarsening very well for the creep samples. KW - Aluminum alloys KW - Electron microscopy KW - Aging KW - Creep KW - Microstructure KW - S-Phase PY - 2018 U6 - https://doi.org/10.1016/j.msea.2018.01.033 SN - 0921-5093 VL - 716 SP - 78 EP - 86 PB - Elsevier B. V. AN - OPUS4-44090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -