TY - CONF A1 - Bäßler, Ralph T1 - On the corrosion mechanism of CO2 transport pipeline steels caused by impurities: Roles of each impure components and benchmarks N2 - Carbon Capture, Utilization and Storage (CCUS) has been proposed as a promising technology for the mitigation of CO2 emissions into the atmosphere from fossil-fuel- operated power generation plants. As the reliability and cost effectiveness of the Pipeline transport network is crucial to the Overall operability and resilience of the CCUS system, it is vital to realize the possible corrosion risks of the employed Pipeline steels corresponding to the impurity Level of the gas source. Recent studies have shown that even the high alloyed materials might be susceptible to General and/or localized corrosion by the condensates forming from the impurities such as SOx, NOx, CO, O2 and water. Up to now, however, there is no regulation procedure which defines the maximum acceptable level of impurities and the combination of them for each employed pipeline steels. Herein, systematic experiment series were conducted by mixing pure CO2 gas with varying concentration of each impurity and with the varying combination of them. Each time, the mixture was then fed (1 L/min) into the reactor containing 12 specimens for 120-600 h at 5°C (to simulate the sub-level Pipeline transport). The resulted condensate was collected and analyzed by ionic chromatography and atomic Absorption spectroscopy to determine the chemical composition. In this study, the “worstcase scenario” gas mixture, containing 2.5 % H2O, 1.8 % O2, 1000 ppm NO2, and 220 ppm SO2 as impurities, resulted in the condensate containing H2SO4 0.114 M and HNO3 0.0184 M (pH 2.13). This “original” condensate was then reproduced to carry out exposure tests and electrochemical characterization including corrosion potentials and impedance spectroscopy in CO2 saturated condition for 7-14 days at the same temperature. The corrosion rate was also measured by mass loss method. We can conclude that, at the initial stage, HNO3 plays the dominant role in Fe dissolution process, while H2SO4 is responsible for the pit initiation followed by pitting corrosion. Future studies will be focused on the combination effect from the impurities and the exposure test under the regularly changing condensate to mimic the real CO2 pipeline system. T2 - Eurocorr 2016 CY - Montpellier, France DA - 11.09.2016 KW - Pipeline transport KW - Condensation KW - Corrosion KW - Carbon capture utilization KW - CO2 PY - 2016 AN - OPUS4-37752 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinemann, Steffi T1 - Optimierung industrieller Korundschleifprozesse zur Sicherstellung der Korrosionsbeständigkeit nichtrostender Stähle N2 - In dem Vortrag wird der aktuelle Stand des AiF-Vorhabens 18823 N/1 vorgestellt und die ersten Ergebnisse zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle werden präsentiert. T2 - Arbeitskreissitzung der GfKORR - AK "Korrosion und Korrosionsschutz von Eisen und Stahl" CY - Duisburg, Germany DA - 14.12.2016 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2016 AN - OPUS4-38699 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nützmann, Kathrin T1 - Nucleation and growth of sulfur phases in grain boundaries N2 - Ferritic-martensitic high temperature alloys are used as building components for different power plant technologies. Depending on the type of fuel, the used power plant materials are exposed to different temperatures and reactive atmospheres containing e.g. CO2, O2, or SO2. Despite the sulfur chemistry is commonly present as an impurity in fossil or bio fuels; its role in high temperature corrosion is not entirely understood. During high temperature corrosion, high-alloyed steels often show sulfur precipitates with the ignoble alloy component(s) along grain boundaries within the base material. Sulfur precipitates are known to seriously influence the mechanical properties of the building component. In the case of VM12 and T92 steels, sulfur phases penetrate the base material along grain boundaries during the corrosion under oxyfuel atmosphere up to 20 µm within the first 960h (Fig. 1a). Figure 1a shows the oxide scale and (Cr, Mn, Fe)xSy grain boundary precipitates in the base material for a T92 steel aged for 960h under oxyfuel atmosphere. Figure 1b shows a thin oxide scale with nodules and also sulfur precipitates of (Fe, Cr)xSy along grain boundaries of the base material for a Fe13Cr model alloy aged for 24h under SO2 atmospheres. After 24h, sulfur precipitates already reached a depth of ca. 15 µm. The present work shows the corrosion behavior of Fe-Cr model alloys with Cr-contents similar to technical steels up to 13 wt%, aged under oxyfuel (27H2O/60CO2/1SO2/10N2/2O2) and SO2 atmospheres in the temperature range of 550 °C < T < 700 °C and for different time scales between 24 h < t < 960 h. During aging, the reactive gases were added when the experimental temperature was reached. To focus on the reaction of the intended elements Fe, Cr, S, and O, model alloys of high purity are used. Transport depths of sulfur and the nucleation of the precipitates are discussed for both, model alloys and technical steels. T2 - Materials Science & Engineering CY - Darmstadt, Germany DA - 27.09.2016 KW - Corrosion KW - Sulfide KW - Sulfidation PY - 2016 AN - OPUS4-37786 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Buchheim, Michaela T1 - Microstructure investigations of iron meteorites by EBSD and EDS analyses N2 - Meteorites are a unique and inspiring material for microstructural studies because if their very specific genesis. Iron meteorites have been formed under unimaginable cooling rates of a few ten Kelvins per million years so that the observable transformation of the formerly huge Fe-Ni single crystals of taenite occurred under nearly-equilibrium conditions. Octahedrites (meteorites having a Ni content between 6...15%) are characterized by ribbons of the low-temperature Fe-Ni phase kamacite separated by rims of residual taenite. This very specific feature is known as Widmanstaetten structure and has been investigated by synchrotron radiation in order to cover a higher volume fraction for a statistically relevant description of orientation relationships. However, plessite – a microstructure mainly consisting of the same phases – reflects the orientation relationship between kamacite and taenite as well. For their characterization, a scanning electron microscope is very suitable in order to investigate crystal orientations or identify phases. Despite the apparently ideal formation circumstances of iron meteorites, Ni concentration profiles prove non-equilibrium conditions. Combined EDS (energy dispersive spectroscopy) and EBSD (electron backscatter diffraction) measurements at a selected plessitic region of the Cape York iron shows that a correlation exists between Ni-concentration and the locally detected orientation relationship. T2 - 15th European Microscopy Congress CY - Manchester, UK DA - 16.09.2012 KW - Phase identification KW - Corrosion KW - Chloride KW - Dermbach PY - 2012 SP - 90 AN - OPUS4-37775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Quiroz, V. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Saldabilita di lamiere in acciaio inossidabile austenico ed austeno-ferritico ad alto contenuto di manganese con processo laser N2 - Manganese alloyed stainless steels represent a cost-effective alternative to conventional CrNi- stainless steels due to strong fl uctuations of the market prices for nickel seen during the last years. In CrMnNi steels, nickel is partially replaced by lower-cost manganese and small amounts of nitrogen for stabilization of the austenitic phase. This also brings benefi ts regarding the mechanical properties, as it results in an increased material strength. Laser beam welding of such materials was investigated for direct comparison with Standard CrNi steels. Main emphasis was laid on fi nding adequate process parameters to achieve a stable welding process and obtain a good weld quality. Two different laser sources, a 4.4 kW Nd:YAG and a 5 kW CO2 laser, were used to weld 1.5 mm stainless steel sheets in continuous wave mode. A high-Mn austenitic (1.4376) and a lean duplex (1.4162) steel, as well as the standard austenitic (1.4301) and duplex (1.4362) grades were selected as test materials. Both butt and lap joint confi gurations were studied. Experiments were carried out systematically, varying the welding speed, laser power and focal point position in order to determine adequate process windows. The infl uence of the shielding gas type and fl ow rate on the process stability and the weld quality were investigated. The effects of weld edge preparation on the weld appearance and quality levels attained were also examined. The obtained welded joints were subjected to radiographic tests for detection of internal imperfections. Also a metallurgical characterization of the samples regarding the resulting phase composition or balance and hardness depending on the welding process parameters was conducted. Furthermore, tensile and potentiodynamic tests were performed to evaluate the mechanical and corrosion properties, respectively. The results provide an insight into the advantages and limitations of the laser beam welding process for joining high-manganese alloyed stainless steels. Conditions for the production of defect-free and corrosion-resistant welds having good mechanical properties could be determined. KW - Weldability KW - Austenitic stainless steels KW - Corrosion KW - CO2 lasers KW - Duplex stainless steels KW - Laser welding KW - Manganese KW - Mechanical properties KW - Shielding gases KW - YAG lasers PY - 2016 SN - 0035-6794 VL - 68 IS - 1 SP - 33 EP - 43 AN - OPUS4-38100 LA - ita AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ewert, Uwe T1 - Progress in digital industrial radiology - Part 1: Radiographic techniques-film replacement and backscatter imaging N2 - Similar to the success story of digital photography a major upheaval has been observed in digital industrial radiology. This paper is split into 3 parts: Part 1: Film Replacement and Backscatter Imaging: Computed radiography with phosphor imaging plates substitutes film applications. Digital Detector Arrays enable an extraordinary increase of contrast sensitivity in comparison to film radiography. The increased sensitivity of digital detectors enables the efficient usage for dimensional measurements and functionality tests substituting manual maintenance. The digital measurement of wall thickness and corrosion status is state of the art in petrochemical industry. Photon counting and energy discriminating detectors are applied up to 300 Kv provide increased thickness dynamic and material discrimination by synchronously acquisition of images of the high and low energy part of the spectrum. X-ray back scatter techniques have been applied in safety and security relevant applications with single sided access of source and detector. First inspections of CFRP in aerospace industry were successfully conducted with newly designed back scatter cameras. Numeric modeling is used to design X-Ray optics and inspection scenarios as well as conducting RT training. Part 2: Computed tomography (CT) Part 3: Micro Radiography and Micro CT. KW - Digital radiography KW - Computed tomography KW - Laminography KW - Imaging plates KW - Digital detector arrays KW - Photon counting detectors KW - Back scatter KW - Numeric modelling KW - CFRP KW - Welding KW - Corrosion PY - 2016 VL - 1-2 SP - 37 EP - 43 AN - OPUS4-39163 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rütters, H. A1 - Stadler, S. A1 - Bäßler, Ralph A1 - Bettge, Dirk A1 - Jeschke, S. A1 - Kather, A. A1 - Lempp, C. A1 - Lubenau, U. A1 - Ostertag-Hennig, C. A1 - Schmitz, S. A1 - Schütz, S. A1 - Waldmann, S. T1 - Towards an optimization of the CO2 stream composition - A whole-chain approach N2 - CO2 streams captured from power stations or industrial plants may contain impurities that impact the consecutive steps of the CO2 capture and storage (CCS) chain. As the basis for an optimization of CO2 purity over the whole CCS chain, impacts of different impurities were investigated at key steps including studies on (i) corrosion of metallic materials in CO2 streams and brine, (ii) fluid and interfacial properties as a function of pressure, temperature and CO2 stream composition and their implications for CO2 transport, injection and geological storage, (iii) costs of different pipeline design options, (iv) geochemical alterations at typical reservoir conditions and their implications for geomechanical rock properties. Major findings are synthesized for two exemplary single source-single sink CCS chain scenarios involving CO2 stream compositions typical for pre-combustion capture and oxyfuel combustion. Recommendations for material selection for compression, transport and injection were derived for various CO2 stream compositions. To reliably control corrosion, a limitation of water contents to 50 ppmv is recommended for pipeline transportation of all CO2 streams. At geological storage conditions, the presence of either O2, NOx or SO2 only weakly affected fluid-mineral/rock interactions that still impacted geomechanical rock properties. KW - CCS KW - Impurities KW - Associated incidental substances KW - Pipeline design KW - Corrosion KW - Fluid-rock interactions PY - 2016 UR - http://www.sciencedirect.com/science/article/pii/S1750583616305047 DO - https://doi.org/10.1016/j.ijggc.2016.08.019 SN - 1750-5836 SN - 1878-0148 VL - 54 IS - 2 SP - 682 EP - 701 PB - Elsevier AN - OPUS4-38401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe Steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900- 1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - 2016 APCBEES Pattaya Conference CY - Pattaya, Thailand DA - 23.01.2016 KW - Heat Treatment KW - CCS KW - CO2 KW - Corrosion KW - Steel PY - 2016 AN - OPUS4-38444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Reinemann, Steffi T1 - Optimierung industrieller Korundschleifprozesse zur Sicherstellung der Korrosionsbeständigkeit nichtrostender Stähle N2 - In dem Vortrag wird das AiF-Vorhaben 18823 N/1 vorgestellt und erste Ergebnisse zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle werden als Diskussionsgrundlagen für einen Schleifworkshop präsentiert. T2 - Jahrestagung 2017 der Forschungsgemeinschaft Schleiftechnik e.V. CY - Würzburg, Germany DA - 08.03.2016 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2017 AN - OPUS4-39317 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Methanogenic Archaea N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures. Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to develop suitable methods for analyzing two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation and transformation. T2 - DECHEMA-GfKORR-Fachgruppe CY - Berlin, Germany DA - 04.10.2017 KW - Biofilm KW - Corrosion KW - Methanogens PY - 2017 AN - OPUS4-43025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -