TY - CONF A1 - Koerdt, Andrea T1 - Methanogenic Archaea N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures. Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to develop suitable methods for analyzing two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation and transformation. T2 - DECHEMA-GfKORR-Fachgruppe CY - Berlin, Germany DA - 04.10.2017 KW - Biofilm KW - Corrosion KW - Methanogens PY - 2017 AN - OPUS4-43025 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g.Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/transformation. T2 - IBRG-Tagung CY - Berlin, Germany DA - 26.04.17 KW - Biofilm KW - Corrosion KW - Implants KW - Methanogens KW - Archaea KW - Anaerob PY - 2017 AN - OPUS4-42492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Aristia, Gabriela T1 - SiO2-containing organic coatings for geothermal application N2 - Geothermal brine is considered to be an aggressive environment as it contains various dissolved salts. Even though carbon steel is commonly used as a construction material due to its machinability and economical reason, it is susceptible to uniform and localized corrosion in a high temperature and high pressure system. Therefore, a coating system is introduced to protect the carbon steel against corrosion in such environment. -It is necessary to find the optimum composition of SiO2 addition in the organic coatings to enhance the material performance, i.e. coatings adhesion, thickness optimization, thermal resistance. Current project aims at the addition of Polyaniline (PANi) as the active agent to improve the corrosion resistance of materials against a high saline medium at elevated temperatures. T2 - BAM PhD Day CY - Berlin, Germany DA - 21.09.2017 KW - Geothermal KW - Corrosion KW - Coating PY - 2017 AN - OPUS4-43362 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin A1 - Reinemann, Steffi T1 - Influence of corundum grinding processes on the corrosion behaviour of austenitic stainless steels N2 - The scientific poster shows by means of corrosion testing in combination with surface analytical methods to which degree corundum grinding influences the corrosion behaviour of stainless steel surfaces. The austenitic stainless steel AISI 304 from a consistent heat was used for all investigations to guarantee the same chemical composition and thus no additional influences caused by the material itself. A wide range of different grinding parameters such as pressure, cooling medium and grain size of the abrasive was varied. Thus, comparison of the corrosion behaviour of different surface states and the evaluation of an optimum grinding process using corundum abrasives were possible. The results will contribute to present discussions and give novel impulses for companies in the metalworking industry. T2 - Eurocorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless steels PY - 2017 AN - OPUS4-41896 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Methanogene Archaea - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/ transformation. T2 - EMBO-Course CY - Wageningen, The Netherlands DA - 24.07.2017 KW - Corrosion KW - Methanogens KW - Biofilm KW - Implants PY - 2017 AN - OPUS4-41899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Thoralf T1 - Long term corrosion behavior of stainless steel in maritime atmosphere N2 - In the context of a research project carried out by BAM, nine different steel alloys were exposed to maritime environmental conditions at the German Island of Helgoland over a period of five years and their corrosion behavior was compared and evaluated. In order to evaluate the influence of a possible concentration of corrosion specific crucial air constituents on the investigated steel grades, a series of sample surfaces were freely exposed to the we ather while other samples were protected from direct rain in a covered area. The parallel investigation of four different surface finishes (cold rolled, dry grinded, electro-polished, blasted) of the respective alloys also made it possible to take account of the specific influences and features of the surface finish during the material comparison. On the basis of the results of the natural exposure tests, conclusions were drawn about the influence of the alloy composition, the surface finish and the exposure time under maritime conditions. The samples of the three investigated duplex alloys exhibited the best corrosion resistance under the given maritime environmental conditions over the five-year period, both with and without crevice geometry. Likewise, the molybdenum alloy ferrite 1.4521 could achieve comparable corrosion resistance as the austenitic standard materials 1.4301 and 1.4404. The results on the freely exposed surfaces showed, that due to the washing effect the influence of the exposure time on the corrosion of the samples is low while the particular surface finish has a great influence on the overall corrosion behavior of the stainless steels. Thus, the electro-polished surfaces showed few signs of corrosion while the blasted surfaces exhibited very poor corrosion behavior. In the case of the covered specimens, the respective material-specific corrosion resistance as well as the exposure time have a significant influence on the corrosion behavior while the surface finishes were of marginal importance. T2 - EuroCorr 2017 CY - Prague, Czech Republic DA - 03.09.2017 KW - Corrosion KW - Maritime atmosphere KW - Stainless steel PY - 2017 AN - OPUS4-41859 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Babutzka, Martin T1 - Einfluss von Korundschleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle N2 - Das Poster stellt aktuelle Eregbnisse des AiF-Vorhabens 18823 N/1 zum Einfluss von Schleifprozessen auf die Korrosionsbeständigkeit nichtrostender Stähle vor. T2 - Jahrestagung 2017 der GfKORR CY - Frankfurt a. M., Germany DA - 07.11.2017 KW - Korrosion KW - Corrosion KW - Korundschleifen KW - Corundum grinding KW - Nichtrostende Stähle KW - Stainless Steels PY - 2017 AN - OPUS4-42773 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hampel, Marco T1 - A new approach for high-resolution analysis of early-stage corrosion processes N2 - The poster presentation summarizes the recent developments on the combination of scanning electrochemical microscopy with multielectrode arrays for the investigation of local corrosion processes. T2 - GfKORR Jahrestagung 2017 CY - Frankfurt am Main, Germany DA - 07.11.2017 KW - Scanning electrochemical microscope (SECM) KW - Multielectrode array sensors KW - Corrosion PY - 2017 AN - OPUS4-43459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dimper, Matthias A1 - Hampel, Marco T1 - Multielectrode array probes for early detection of corrosion processes N2 - Multielectrodes are arrays of single electrodes arranged in a particular geometry. In our work, all the single electrodes are identical stainless steel X5CrNi18-10 (1.4301) wire electrodes. Using a multielectrode analyser all single electrodes are connected via zero resistance ammeters, simulating a galvanically coupled single electrode surface. The advantage of the multielectrode analyser (MMA) is that the currents flowing between single electrodes can be measured. Thus, real-time maps can be generated indicating where anodic and cathodic areas lie on the surface of the multielectrode and how they behave. The combination of the multielectrode analyser with the scanning electrochemical microscopy (SECM) enables the identification of corrosion sites and the detailed electrochemical analysis. T2 - DECHEMA/GfKORR-Fachgruppe "Mikrobielle Materialzerstörung und Materialschutz" CY - Berlin, Germany DA - 04.10.2017 KW - Scanning electrochemical microscope (SECM) KW - Multielectrode array sensors KW - Corrosion PY - 2017 AN - OPUS4-43461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stephan-Scherb, Christiane T1 - Real time observation of crystallization and growth of corrosion products by energy dispersive X-ray diffraction N2 - Ferritic-martensitic high temperature alloys are widely used as boiler tube and heat exchanger materials in combustion based power plants. All technologies have in common that the applied materials are exposed to different temperatures, process pressures and reactive atmospheres which lead to a change of the material properties and a further degradation of the material. To date corrosion analytics mainly proceeds via the use of various microscopic techniques and the analysis of the corrosion products after the reaction is completed. Comprehensive efforts have been made to study high temperature corrosion by the use of environmental SEM’s or in-situ TEM technologies. The here presented work will show a different approach to study high temperature gas corrosion in a multiple gas atmosphere by energy dispersive X-ray diffraction (EDXRD). For this technique high energetic white X-ray radiation (10-100 keV) was used as radiation source instead of conventional monochromatic radiation. It enables us to study crystallization procedures on short and medium time scales (1 min < t < 24 h) and the collection of Bragg-Signals of the phases of interest as a function of process time. Their occurrence can directly be correlated with thermodynamic and kinetic parameters. A special designed corrosion reactor was used to combine high temperature gas corrosion experiments with the collection of diffraction patter. The crystallization and reaction paths for oxide and sulfide formation was followed in-situ on Fe-Cr and Fe-Cr-Mn model alloys in a hot SO2 containing (T=650 °C) atmosphere. T2 - Gordon Research Conference on High Temperature Corrosion and Protection of Materials CY - New London, NH, USA DA - 09.07.2017 KW - Corrosion KW - In situ diffraction KW - Crystallization PY - 2017 AN - OPUS4-44717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -