TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe Steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900- 1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - 2016 APCBEES Pattaya Conference CY - Pattaya, Thailand DA - 23.01.2016 KW - Heat Treatment KW - CCS KW - CO2 KW - Corrosion KW - Steel PY - 2016 AN - OPUS4-38444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) T2 - 2016 Pattaya Conference Proceedings N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900-1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - 6th International Conference on Future Environment and Energy (ICFEE 2016) CY - Pattaya, Thailand DA - 23.01.2016 KW - CCS KW - CO2 KW - Corrosion KW - Steel KW - Heat treatment PY - 2016 SP - 9 EP - 14 AN - OPUS4-38980 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Borehole integrity of austenitized and annealed pipe steels suitable for carbon capture and storage (CCS) T2 - International Journal of Materials, Mechanics and Manufacturing N2 - Properties of pipe steels for CCS (carbon capture and storage) technology require resistance against the corrosive environment of a potential CCS-site (heat, pressure, salinity of the aquifer, CO2-partial pressure). The influence of austenitzing in heat treatment routines of two different injection pipe steels (1.4034, X46Cr13 and 1.4021, X20Cr13) was evaluated. Steel coupons were austenitized at different temperatures (900- 1050 °C) for different lengths of time (30-90 min) before quenching and annealing prior to long term corrosion experiments (60°C, 100 bar, artificial brine close to a CCS-site in the Northern German Basin, Germany). In general, fewer pits are found on X46Cr13. Comparing steels with 13% chromium each the higher carbon content of X46Cr13 (0.46% C) results in a lower number of pits compared to X20Cr13 (0.20% C). It is found that neither the carbon content of the steels nor austenitizing temperature has much influence, but local corrosion behaviour is most susceptible towards austenitzing time. T2 - International Conference on Future Environment and Energy CY - Pattaya, Thailand DA - 23.01.2016 KW - Corrosion KW - CCS KW - Carbon storage KW - Aquifer KW - Austenitizing PY - 2017 SP - Article A0005, 213 EP - 219 AN - OPUS4-41854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Kranzmann, Axel T1 - Effects of saline aquifer water on the corrosion behaviour of martensitic stainless steels during exposure to CO2 environment T2 - Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021 N2 - Immersion tests of potential injection pipe steels 42CrMo4, X20Cr13, X46Cr13, X35CrMo4 and X5CrNiCuNb16-4 at T=60 °C and ambient pressure and p=100 bar were performed for 700 h - 8000 h in a CO₂-saturated synthetic aquifer environment similar to CCS-sites in the Northern-German-Basin. Main corrosion products are FeCO₃ and FeOOH. Highest surface corrosion rates at ambient pressure are 0.8 mm/year for 42CrMo4 and lowest 0.01 mm/year for X5CrNiCuNb16-4. Corrosion rates at 100 bar (max. 0.01 mm/year for 42CrMo4, X20Cr13, X46Cr13) are generally lower than at ambient pressure (<0.01 mm/year for X35CrMo4, X5CrNiCuNb16-4). Heat treatment to martensitic microstructure offers good corrosion resistance. T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - CCS KW - Corrosion KW - High alloyed steels PY - 2021 DO - https://doi.org/10.2139/ssrn.3812248 SP - 1 EP - 12 PB - SSRN CY - Rochester, NY AN - OPUS4-53140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Wolf, Marcus A1 - Kranzmann, Axel T1 - Evaluating corrosion and corrosion fatigue behavior via laboratory testing techniques in highly corrosive CCS-environment T2 - Proceedings of the 15th Greenhouse Gas Control Technologies Conference 15-18 March 2021 N2 - In CCS environment (carbon capture and storage) pipes are loaded statically and/or cyclically and at the same time exposed constantly to the highly corrosive hot thermal water. Experimental procedures such as ambient pressure immersions tests, in-situ corrosion fatigue experiments using a flexibly designed corrosion chamber at ambient pressure and a specially designed corrosion chamber at high pressure. Experimental set-ups for push/pull and rotation bending load are introduced. The corrosion behavior and lifetime reduction of high alloyed steels (X46Cr13, 1.4043), (X5CrNiCuNb16-4, 1.4542) and (X2CrNiMoN22-5-3, 1.4462) is demonstrated (T=60 °C, geothermal brine: Stuttgart Aquifer flow rate: 9 l/h, CO₂). T2 - 15th International Conference on Greenhouse Gas Control Technologies, GHGT-15 CY - Abu Dhabi, United Arab Emirates DA - 15.03.2021 KW - Steel KW - Supercritical CO2 KW - Pipeline KW - Corrosion KW - CO2-storage PY - 2021 DO - https://doi.org/10.2139/ssrn.3812193 SP - 1 EP - 11 PB - SSRN CY - Rochester, NY AN - OPUS4-53142 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -