TY - CONF A1 - Mishurova, Tatiana T1 - 3D imaging and residual stress analysis of AM materials at BAM N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). T2 - Seminar at Chalmers University and Centre for Additive Manufacture (CAM2) CY - Gothenburg, Sweden DA - 19.05.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Residual stress KW - Computed tomography KW - Synchrotron X-ray diffraction KW - X-ray refraction PY - 2022 AN - OPUS4-55019 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar T1 - Multiscale residual stress analysis and synchrotron X-ray refraction of additively manufactured parts N2 - The overview of the activity of group 8.5 Micro-NDT (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The challenges in the residual stress analysis of AM components are discussed on the basis on the show studies performed in BAM. Also, the synchrotron X-ray refraction technique, available in BAM, is presented, showing example of in-situ heating test of Al10SiMg AM material. T2 - Seminar at Grenoble INP, Science et Ingénierie des Matériaux et Procédés (SIMaP) CY - Grenoble, France DA - 01.07.2022 KW - Additive manufacturing KW - Residual stress KW - X-ray refraction KW - Computed tomography PY - 2022 AN - OPUS4-55232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, Bharat A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryda, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - Most of the Al alloys used in additive manufacturing (AM), in particular Laser Powder Bed Fusion (LPBF), do not exceed a strength of 200 MPa, whereas conventionally high-performance alloys exhibit strengths exceeding 400 MPa. The availability of such Al alloys in AM is limited due to difficulties in printability, requiring synergetic material and AM process development to satisfy harsh processing conditions during LPBF [1]. One approach is the addition of reinforcement to the based powder, allowing tailoring composition and properties of a Metal Matrix Composite (MMC) by AM. Still, the effect of the reinforcement on the resulting mechanical properties must be studied to understand the performance and limits of the newly developed material. The goal of this work was to investigate the failure mechanism of LPBF Al-based MMC material using in-situ Synchrotron X-ray Computed Tomography (SXCT) during mechanical testing. T2 - International conference on tomography of material and structures CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Al alloy KW - MMC PY - 2022 AN - OPUS4-55228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Mishurova, Tatiana A1 - Evlevleev, Sergei A1 - Khrapov, D. A1 - Meinel, Dietmar A1 - Surmenev, R. A1 - Surmeneva, M. A1 - Koptyug, A. T1 - Procedures to Quantitatively Characterize Morphological Features of Triply Periodic Minimal Surface Structures N2 - Additively manufactured (AM) metallic sheet-based Triply Periodic Minimal Surface Structures (TPMSS) meet several requirements in both bio-medical and engineering fields: Tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some challenges related to quality control. In fact, the optimization of both the AM process and the properties of TPMSS is impossible without considering structural characteristics as manufacturing accuracy, internal defects, and as well as surface topography and roughness. In this study, the quantitative non-destructive analysis of TPMSS manufactured from Ti-6Al-4V alloy by electron beam melting was performed by means of laboratory X-ray computed tomography (XCT). T2 - International conference on tomography of material and structures 2022 CY - Grenoble, France DA - 27.06.2022 KW - Additive manufacturing KW - Scaffold KW - Lightweight structures KW - Computed tomography PY - 2022 AN - OPUS4-55229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron x ray refraction detects microstructure and porosity evolution during in situ heat treatments in an LPBF ALSI10MG alloy N2 - The complexity of any microstructural characterization significantly increases when there is a need to evaluate the icrostructural evolution as a function of temperature. To date, this characterization is primarily performed by undertaking elaborative ex-situ experiments where the material’s heating procedure is interrupted at different temperatures or times. Moreover, these studies are often limited to a region smaller than the representative elementary volume, which can lead to partial or even biased interpretations of the collected data. This limitation can be greatly overcome by using in-situ synchrotron X-ray refraction (SXRR). T2 - ICTMS 2022 CY - Grenoble, France DA - 27.06.2022 KW - Synchrotron refraction KW - In situ heating KW - AlSi10Mg alloy KW - Additive manufacturing KW - Microstructural evolution PY - 2022 AN - OPUS4-55199 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Becker, Tina A1 - Breese, Philipp Peter A1 - Maierhofer, Christiane T1 - Towards hyperspectral in-situ temperature measurement in metal additive manufacturing N2 - The industrial use of additive manufacturing for the production of metallic parts with high geometrical complexity and lot sizes close to one is rapidly increasing as a result of mass individualisation and applied safety relevant constructions. However, due to the high complexity of the production process, it is not yet fully understood and controlled, especially for changing (lot size one) part geometries. Due to the thermal nature of the Laser-powder bed fusion (L-PBF) process – where parts are built up layer-wise by melting metal powder via laser - the properties of the produced part are strongly governed by its thermal history. Thus, a promising route for process monitoring is the use of thermography. However, the reconstruction of temperature information from thermographic data relies on the knowledge of the surface emissivity at each position on the part. Since the emissivity is strongly changing during the process due to phase changes, great temperature gradients, possible oxidation, and other potential influencing factors, the extraction of real temperature data from thermographic images is challenging. While the temperature development in and around the melt pool, where melting and solidification occur is most important for the development of the part properties. Also, the emissivity changes are most severe in this area, rendering the temperature deduction most challenging. A possible route to overcome the entanglement of temperature and emissivity in the thermal radiation is the use of hyperspectral imaging in combination with temperature emissivity separation (TES) algorithms. As a first step towards the combined temperature and emissivity determination in the L-PBF process, here, we use a hyperspectral line camera system operating in the short-wave infrared region (0.9 µm to 1.7 µm) to measure the spectral radiance emitted. In this setup, the melt pool of the L-PBF process migrates through the camera’s 1D field of view, so that the radiation intensities are recorded simultaneously for multiple different wavelength ranges in a spatially resolved manner. At sufficiently high acquisition frame rate, an effective melt pool image can be reconstructed. Using the grey body approximation (emissivity is independent of the wavelength), a first, simple TES is performed, and the resulting emissivity and temperature values are compared to literature values. Subsequent work will include reference measurements of the spectral emissivity in different states allowing its analytical parametrisation as well as the adaption and optimisation of the TES algorithms. An illustration of the proposed method is shown in Fig.1. The investigated method will allow to gain a deeper understanding of the L-PBF process, e.g., by quantitative validation of simulation results. Additionally, the results will provide a data basis for the development of less complex and cheaper sensor technologies for L-PBF in-process monitoring (or for related process), e.g., by using machine learning. T2 - 21st International Conference on Photoacoustic and Photothermal Phenomena CY - Bled, Slovenia DA - 19.06.2022 KW - Thermography KW - Additive manufacturing KW - L-PBF KW - Hyperspectral PY - 2022 AN - OPUS4-55152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Serrano Munoz, Itziar A1 - Markötter, Henning A1 - Mehta, Bharat A1 - Hryha, Eduard A1 - Bruno, Giovanni T1 - In-situ imaging of additively manufactured alloys at the BAMline N2 - In this work, we present the recent in-situ imaging developments at the BAMline (of synchrotron BESSY II, HZB), focused on the in-situ characterization and understanding of microstructural evolution of additively manufactured materials subjected to different environments. Two show cases are presented. In the first, X-ray refraction radiography (SXRR) was combined with in-situ heat treatment to monitor the microstructural evolution as a function of temperature in a laser powder bed fusion (LPBF) manufactured AlSi10Mg alloy. We show that SXRR allows detecting the changes in the Si-phase morphology upon heating using statistically relevant volumes. SXRR also allows observing the growth of pores (i.e., thermally induced porosity), usually studied via X-ray computed tomography (XCT), but using much smaller fields-of-view. In the second case study, XCT was combined with in-situ tensile test to investigate the damage mechanism in a LPBF Aluminum Metal Matrix Composite (MMC). In-situ SXCT test disclosed the critical role of the defects in the failure mechanism along with pre-cracks in the reinforcement phase of MMC. We found that cracks were initiated from lack-of-fusion defects and propagated through coalescence with other defects. T2 - New Frontiers in Materials Design for Laser Additive Manufacturing CY - Montabaur, Germany DA - 22.05.22 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - Synchrotron X-ray Refraction PY - 2022 AN - OPUS4-54900 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Meinel, Dietmar A1 - Koptyug, A. A1 - Surmeneva, M. A1 - Khrapov, D. A1 - Paveleva, A. A1 - Surmenev, R. T1 - Procedures for quantitative characterization of periodic minimal surface structures (TMPSS) N2 - Additively manufactured (AM) triply periodic metallic minimum surface structures (TPMSS, from the English Triply Periodic Minimum Surface Structures) fulfill several requirements in both biomedical and engineering fields: tunable mechanical properties, low sensitivity to manufacturing defects, mechanical stability, and high energy absorption. However, they also present some quality control challenges that may prevent their successful application. In fact, optimization of the AM process is impossible without considering structural features such as manufacturing accuracy, internal defects, and surface topography and roughness. In this study, quantitative nondestructive analysis of Ti-6Al-4V alloy TPMSS was performed using X-ray computed tomography (XCT). Several new image analysis workflows are presented to evaluate the effects of buildup direction on wall thickness distribution, wall degradation, and surface roughness reduction due to chemical etching of TPMSS. It is shown that the fabrication accuracy is different for the structural elements printed parallel and orthogonal to the fabricated layers. Different strategies for chemical etching showed different powder removal capabilities and thus a gradient in wall thickness. This affected the mechanical performance under compression by reducing the yield stress. A positive effect of chemical etching is the reduction of surface roughness, which can potentially improve the fatigue properties of the components. Finally, XCT was used to correlate the amount of powder retained with the pore size of the TPMSS, which can further improve the manufacturing process. T2 - MSE 2022 CY - Darmstadt, Germany DA - 27.09.2022 KW - Surface roughness KW - Additive manufacturing KW - Computed tomography KW - Wall thickness KW - Machine learning KW - Manufacturing defects PY - 2022 AN - OPUS4-56162 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Voloskov, B. A1 - Mishurova, Tatiana A1 - Evlashin, S. A1 - Akhatov, I. A1 - Bruno, Giovanni A1 - Sergeichev, I. T1 - Artificial Defects in 316L Stainless Steel Produced by Laser Powder Bed Fusion: Printability, Microstructure, and Effects on the Very-High-Cycle Fatigue Behavior N2 - The printability of artificial defects inside the additively manufactured laser powder bed fusion (LPBF) 316L stainless steel is investigated. The printing parameters of the LPBF process are optimized to produce artificial defects with reproducible sizes at desired positions while minimizing redundant porosity. The smallest obtained artificial defect is 90 μm in diameter. The accuracy of the geometry of the printed defect depends on both the height and the diameter in the input model. The effect of artificial defects on the very-high-cycle fatigue (VHCF) behavior of LPBF 316L stainless steel is also studied. The specimens printed with artificial defects in the center are tested under VHCF using an ultrasonic machine. Crack initiation is accompanied by the formation of a fine granular area (FGA), typical of VHCF. Despite the presence of relatively large artificial defects, FGA formation is observed around accidental natural printing defects closer to the surface, which can still be considered as internal. The causes for this occurrence are discussed. KW - Additive manufacturing KW - Laser powder bed fusion KW - X-ray computed tomography KW - VHCF PY - 2022 U6 - https://doi.org/10.1002/adem.202200831 SP - 1 EP - 13 PB - Wiley VHC-Verlag AN - OPUS4-56109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Mehta, B. A1 - Nyborg, L. A1 - Virtanen, E. A1 - Markötter, Henning A1 - Hryha, E. A1 - Bruno, Giovanni T1 - Failure Mechanisms Investigation by Means of in-situ Synchrotron Computed Tomography in Aluminum MMC-based Alloy Tailored for Additive Manufacturing (AM) N2 - The availability of high-performance Al alloys in AM is limited due to difficulties in printability, requiring both the development of synergetic material and AM process to mitigate problems such as solidification cracking during laser powder bed fusion (LPBF). The goal of this work was to investigate the failure mechanism in a LPBF 7017 Aluminium alloy + 3 wt% Zr + 0.5 wt% TiC. The processing leads to different categories of Zr-rich inclusions, precipitates and defects. T2 - Alloys for Additive Manufacturing Symposium 2022 (AAMS22) CY - Munich, Germany DA - 11.09.2022 KW - Additive manufacturing KW - Laser powder bed fusion KW - Synchrotron X-ray computed tomography KW - MMC PY - 2022 AN - OPUS4-56110 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -