TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of Polyglycolide via Polycondensation: A Reinvestigation JF - Macromolecular Chemistry and Physics N2 - The Na salt of chloroacetic acid is condensed in suspension. Furthermore,glycolic acid is condensed in bulk or in concentrated solution by means of SnCl2 or 4-toluene sulfonic acid (TSA) as catalysts. The temperatures are varied from 160 to 200°C and the time from 1 to 5 days. Low molar mass cyclic poly(glycolic acid) (PGA) is detected by means of matrix-assisted laser desorption ionization time-of-flight (MALDI TOF) mass spectrometry in most PGAs. A predominance of certain cycles having an even number of repeat units is observed suggesting a thermodynamically favored formation of extended-ring crystals. Extremely high melting temperatures (up to 237.5°C)and high melting enthalpies are found for polycondensations with TSA in 1,2-dichlorobenzene. KW - MALDI TOF MS KW - Polycondensation KW - Polyglycolide KW - Cyclization PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-596856 DO - https://doi.org/10.1002/macp.202300397 IS - 2300397 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-59685 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Meyer, A. T1 - Syntheses of high molecular mass polyglycolides via ring-opening polymerization with simultaneous polycondensation(ROPPOC) by means of tin and zinc catalysts JF - Polymers for Advanced Technologies N2 - Glycolide was polymerized in bulk by means of four different ROPPOC catalysts: tin(II) 2-ethylhexanoate (SnOct2), dibutyltin bis(pentafluoro-phenoxide) (BuSnOPF),zinc biscaproate (ZnCap), and zinc bis(pentafluoro-phenyl sulfide) (ZnSPF). The temperature was varied between 110 and 180°C and the time between 3 h and 7 days. For the few polyglycolides (PGAs) that were soluble extremely high molecular masses were obtained. The MALDI TOF mass spectra had all a low signal-to-noise ration and displayed the peaks of cyclic PGAs with a“saw-tooth pattern ”indicating formation of extended-ring crystallites in the mass range below m/z 2500. The shape of DSC curves varied considerably with catalyst and reaction conditions, whereas the long-distance values measured by SAXS were small and varied little with the polymeriza-tion conditions. KW - MALDI TOF MS KW - Polyglycolide KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-598221 DO - https://doi.org/10.1002/pat.6365 VL - 35 IS - 4 SP - 1 EP - 10 PB - John Wiley & Sons Ltd. AN - OPUS4-59822 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Polycondensation of poly(L-lactide) alkyl esters combined with disproportionation and symproportionation of the chain lengths JF - Journal of Polymer Science A: Polymer Chemistry N2 - Ring-opening polymerizations (ROPs) of l-lactide (LA) were performed with ethyl l-lactate or 11-bromoundecanol as initiators (In) and tin(II) ethyl hexanoate (SnOct2) as catalyst (Cat) using four different LA/In ratios (20/1, 40/1, 60/1, and 100/1). One series of ROPs was conducted in bulk at 120 °C, yielding PLAs with low dispersities (Ð ~ 1.2–1.4), and a second series was conducted in bulk at 160 °C, yielding higher dispersities (Ð ~ 1.3–1.9). Samples from both series were annealed for 1 or 14 days at 140 °C in the presence of SnOct2. Both polycondensation and disproportionation reactions occurred, so that all four samples tended to form the same type of molar mass distribution below 10,000 Da, regardless of their initially different number average molar masses (Mn). Both initiators gave nearly identical results. The thermodynamic control of all reversible transesterification processes favored the formation of crystallites composed of chains with a Mn around 3500–3700, corresponding to a crystal thickness of 10–13 nm. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-600081 DO - https://doi.org/10.1002/pol.20240118 SN - 2642-4150 SP - 1 EP - 12 PB - Wiley AN - OPUS4-60008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, Hans R. A1 - Weidner, Steffen T1 - Ring-ring equilibration (RRE) of cyclic poly(L-lactide)s by means of cyclic tin catalysts JF - European Polymer Journal N2 - With 2,2-dibutyl-2-stanna-1,3-dithiolane (DSTL) and 2-stanna-1,3-dioxa-4,5,6,7-dibenzoxepane (SnBiPh) as catalysts ring-expansion polymerizations (REP) were performed either in 2 M solution using three different solvents and two different temperatures or in bulk at 140 and 120 ◦C. A kinetically controlled rapid REP up to weight average molecular masses (Mẃs) above 300 000 was followed by a slower degradation of the molecular masses at 140 ◦C, but not at 120 ◦C Furthermore, a low molecular mass cyclic poly(L-lactide) (cPLA) with a Mn around 16 000 was prepared by polymerization in dilute solution and used as starting material for ring-ring equilibration at 140 ◦C in 2 M solutions. Again, a decrease of the molecular mass was detectable, suggesting that the equilibrium Mn is below 5 000. The degradation of the molecular masses via RRE was surprisingly more effective in solid cyclic PLA than in solution, and a specific transesterification mechanism involving loops on the surface of crystallites is proposed. This degradation favored the formation of extended-ring crystallites, which were detectable by a “saw-tooth pattern” in their MALDI mass spectra. KW - Organic Chemistry KW - Polymers and Plastics KW - MALDI-TOF MS KW - Materials Chemistry PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-593819 DO - https://doi.org/10.1016/j.eurpolymj.2024.112765 SN - 0014-3057 VL - 206 SP - 1 EP - 8 PB - Elsevier B.V. AN - OPUS4-59381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Falkenhagen, Jana A1 - Kricheldorf, H. R. T1 - Polycondensations and Cyclization of Poly(L-lactide) Ethyl Esters in the Solid State JF - Polymer Chemistry N2 - The usefulness of seven different Tin catalysts, Bismuth subsalicylate and Titan tetra(ethoxide) for the polycondensation of ethyl L-lactate (ELA) was examined at 150 °C/6 d. Dibutyltin bis(phenoxides) proved to be particularly effective. Despite the low reactivity of ELA, weight average molecular masses (Mw) up to 12 500 were found along with partial crystallization. Furthermore, polylactides (PLAs) of similar molecular masses were prepared via ELA-initiated ROPs of L-lactide by means of the four most effective polycondensation catalysts. The crystalline linear PLAs were annealed at 140 or 160 °C in the presence of these catalysts. The consequences of the transesterification reactions in the solid PLAs were studied by means of matrix-assisted laser desorption/ionization (MALDI TOF) mass spectrometry, gel permeation chromatography (GPC) and small-angle X-ray scattering (SAXS). The results indicate that polycondensation and formation of cycles proceed in the solid state via formation of loops on the surface of the crystallites. In summary, five different transesterification reactions are required to explain all results. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-592934 DO - https://doi.org/10.1039/d3py01232h SN - 1759-9962 VL - 15 IS - 2 SP - 71 EP - 82 PB - RSC Publ. CY - Cambridge AN - OPUS4-59293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - Alcohol-Initiated and SnOct2-Catalyzed Ring-Opening Polymerization (ROP) of L-Lactide in Solution: A Re-investigation JF - European Polymer Journal N2 - Alcohol-initiated ring-opening polymerizations (ROP) of L-lactide (LA) were studied in solution at 70 °C, whereupon the nature of the alcohol, the LA/initiator ratio, the LA/SnOct2 ratio and the time were varied. In contrast to literature, neat SnOct2 is catalytically active in THF and several aromatic but donor solvents, such as 1,3-dioxolane, dimethylformamide (DMF) or N-methyl pyrrolidone (NMP), strongly reduce the activity of SnOct2. In agreement with literature, no cycles were formed by neat SnOct2 at 70 °C in toluene, whereas almost complete cyclization occurs at 115 °C. This finding is attributed to strongly reduced mobility of the initially formed linear chains having one Sn-O-CH and one anhydride end group. Due to better solvation and enhanced mobility cyclization occurs in THF at 70 °C. KW - Polylactide KW - Ring-opening polymerization KW - MALDI-TOF MS KW - Transesterification PY - 2023 DO - https://doi.org/10.1016/j.eurpolymj.2023.111822 SN - 0014-3057 SP - 1 EP - 18 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-56818 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Scheliga, F. A1 - Weidner, Steffen T1 - Syntheses of Cyclic Poly(l-lactide)s by Means of Zinc-Based Ring-Opening Polymerization with Simultaneous Polycondensation (ROPPOC) Catalysts JF - Macromolecular Chemistry and Physics N2 - Ring-opening polymerizations of l-lactide are studied in bulk at 140 or 160 °C with zinc n-hexanoate, zinc 4-chlorothiophenolate, and zinc pentafluoro thiophenolate (ZnSPF) as catalysts. The reactivity increases in the given order. With all three catalysts a high fraction of cycles is obtained only at polymerization (annealing) times around 7 d. With ZnSPF weight average molecular weights (Mw) up to 178 000, a Tm around 199 °C and a 𝚫Hm around 99 J g−1 were achieved. The samples annealed for 4 or 7 d also display a saw tooth pattern of the mass peak distribution in the matrix-assisted laser desorption/ionization time of flight spectra indicating transesterification reactions across the surface of extended ring crystals. This process optimizes the thermodynamical properties of the crystalline cyclic polylactides and is responsible for the high Tm and 𝚫Hm values. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Polymerization PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578264 DO - https://doi.org/10.1002/macp.202300070 SN - 1022-1352 SP - 202300070 PB - Wiley VHC-Verlag AN - OPUS4-57826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Meyer, A. T1 - About the Influence of (Non-)Solvents on the Ring Expansion Polymerization of l-Lactide and the Formation of Extended Ring Crystals JF - Macromolecular Chemistry and Physics N2 - Ring-expansion polymerizations (REPs) catalyzed by two cyclic tin catalysts (2-stanna-1.3-dioxa-4,5,6,7-dibenzazepine [SnBiph] and 2,2-dibutyl-2-stanna-1,3-dithiolane [DSTL]) are performed at 140 °C in bulk. Small amounts (4 vol%) of chlorobenzene or other solvents are added to facilitate transesterification reactions (ring–ring equilibration) in the solid poly(l-lactide)s. In the mass range up to m/z 13 000 crystalline PLAs displaying a so-called saw-tooth pattern in the MALDI-TOF mass spectra are obtained indicating the formation of extended-ring crystals. The characteristics of extended-ring crystallites and folded-ring crystallites are discussed. Furthermore, extremely high melting temperatures (Tm’s up to 201.2 °C) and melting enthalpies (𝚫Hm’s up to 106 J g−1)) are found confirming that 𝚫Hm max, the 𝚫Hm of a perfect crystal, is around or above 115 J g−1 in contrast to literature data. KW - Polylactide KW - MALDI-TOF MS KW - Ring-expansion polymerization KW - Biobased PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573063 DO - https://doi.org/10.1002/macp.202200385 VL - 224 IS - 5 SP - 1 EP - 8 PB - Wiley VHC-Verlag AN - OPUS4-57306 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. R. A1 - Weidner, Steffen T1 - About the crystallization of cyclic and linear poly(L-lactide)s in alcohol-initiated and Sn(II)2-ethylhexanoate- catalyzed ROPs of L-lactide conducted in solution JF - Polymer N2 - 1-Hydroxymethylnaphtalene (HMN) or 11-bromoundecanol (BUND) were used as initiators and Sn(II) 2-ethylhexanoate (SnOct2) as catalyst for ROPs of L-Lactide (LA) at 115 °C in bulk or in 4 M and 2M solutions in toluene. The LA/In ratio, the LA/Cat ratio and the time were varied. The matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectra exclusively displayed peaks of linear chains, when the ROPs were conducted in bulk. But in contrast to reports in the literature, mixtures of linear and cyclic poly(L-lactide) (PLA), were obtained, when the ROPs were performed in solution. The intensity distribution of the mass peaks of cyclic PLAs displayed a “saw-tooth pattern” after annealing in contrast to the mass peak distribution of the liner chains. This new phenomenon indicated that cyclic PLAs and linear PLAs crystallized in separate crystals from the same reaction mixture. This conclusion was confirmed by fractionated crystallization from 2 M solution, which confirmed that the cyclic PLAs nucleate and crystallize faster than the linear chains. KW - Polylactide KW - MALDI-TOF MS KW - Ring opening polymerization KW - Crystallization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.125946 SN - 0032-3861 VL - 276 SP - 1 EP - 11 PB - Elsevier Ltd. AN - OPUS4-57308 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Meyer, A. A1 - Kricheldorf, H. R. T1 - Alcohol-initiated and Tin(II) 2-ethylhexanoate-catalyzed polymerization of L-lactide in bulk – About separate crystallization of cyclic and linear Poly (L-lactide)s JF - Polymer N2 - Alcohol-initiated ROPs of L-Lactide were performed at 140 ◦C in bulk with variation of the initiator/catalyst ratio and time. Lower ratios favor the formation of cycles which upon annealing display a change of the MALDI mass peak distribution towards a new maximum with a “saw-tooth pattern” of the mass peaks representing the cycles. Such a pattern was not observed for the mass peak of the linear chains. The coexistence of these patterns indicate that linear and cyclic poly (L-lactide)s (PLA) crystallize in separate crystals, and that the crystallites of the cycles are made up by extended rings. High Tm and ΔHm values confirm that these extended-ring crystallites represent a thermodynamically optimized form of PLA. Experiments with preformed cyclic and linear PLAs support this interpretation. KW - Polylactide KW - MALDI-TOF MS KW - Crystalinity KW - Polymerization PY - 2023 DO - https://doi.org/10.1016/j.polymer.2023.126355 VL - 285 IS - 126355 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58355 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -