TY - JOUR A1 - Dzekan, D. A1 - Waske, Anja A1 - Nielsch, K. A1 - Fähler, S. T1 - Efficient and affordable thermomagnetic materials for harvesting low grade waste heat JF - APL Materials N2 - Industrial processes release substantial quantities of waste heat, which can be harvested to generate electricity. At present, the conversion of low grade waste heat to electricity relies solely on thermoelectric materials, but such materials are expensive and have low thermodynamic efficiencies. Although thermomagnetic materials may offer a promising alternative, their performance remains to be evaluated, thereby hindering their real-world application. Here, the efficiency and cost effectiveness of thermomagnetic materials are evaluated for the usage in motors, oscillators, and generators for converting waste heat to electricity. The analysis reveals that up to temperature differences of several 10 K, the best thermomagnetic materials have the potential to compete with thermoelectric materials. Importantly, it is found that the price per watt of some thermomagnetic materials is much lower compared to that of present-day thermoelectrics, which can become competitive with conventional power plants. This materials library enables the selection of the best available thermomagnetic materials for harvesting waste heat and gives guidelines for their future development. KW - Waste heat conversion KW - Magnetic materials KW - Thermomagnetic generator PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-541493 DO - https://doi.org/10.1063/5.0033970 VL - 9 SP - 1 EP - 9 PB - AIP Publishing CY - Melville, USA AN - OPUS4-54149 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Plarre, Rüdiger A1 - Zocca, Andrea A1 - Spitzer, Andrea A1 - Benemann, Sigrid A1 - Gorbushina, Anna A1 - Li, Y. A1 - Waske, Anja A1 - Funk, Alexander A1 - Wilgig, Janka A1 - Günster, Jens T1 - Searching for biological feedstock material: 3D printing of wood particles from house borer and drywood termite frass JF - PLOS One N2 - Frass (fine powdery refuse or fragile perforated wood produced by the activity of boring insects) of larvae of the European house borer (EHB) and of drywood termites was tested as a natural and novel feedstock for 3D-printing of wood-based materials. Small particles produced by the drywood termite Incisitermes marginipennis and the EHB Hylotrupes bajulus during feeding in construction timber, were used. Frass is a powdery material of particularly consistent quality that is essentially biologically processed wood mixed with debris of wood and faeces. The filigree-like particles flow easily permitting the build-up of woodbased structures in a layer wise fashion using the Binder Jetting printing process. The Quality of powders produced by different insect species was compared along with the processing steps and properties of the printed parts. Drywood termite frass with a Hausner Ratio HR = 1.1 with ρBulk = 0.67 g/cm3 and ρTap = 0.74 g/cm3 was perfectly suited to deposition of uniformly packed layers in 3D printing. We suggest that a variety of naturally available feedstocks could be used in environmentally responsible approaches to scientific material sciences/additive manufacturing. KW - 3D printing KW - X-ray tomographic KW - SEM micrography KW - Drywood termite PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-521517 DO - https://doi.org/10.1371/journal.pone.0246511 VL - 16 IS - 2 SP - e0246511 AN - OPUS4-52151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Dzekan, D. A1 - Neumann, B. A1 - Berger, D. A1 - Sellschopp, K. A1 - Stork, A. A1 - Nielsch, K. A1 - Fähler, S. T1 - Energy Harvesting Using Thermomagnetic Generators with Magnetocaloric Materials N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. More than a century ago, thermomagnetic generators were proposed, which are based on a change of magnetization with temperature, switching a magnetic flux, which according to Faraday’s law induces a voltage. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. A pretzel-like topology of the magnetic circuit with genus =3 improves the performance of thermomagnetic generators by orders of magnitude. We will show that this technique is on its way to becoming competitive with thermoelectrics for energy harvesting near room temperature. T2 - TMS Annual Meeting CY - San Diego, CA, USA DA - 23.02.2020 KW - Materials science KW - Energy harvesting PY - 2020 AN - OPUS4-51903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Dzekan, D. A1 - Nielsch, K. A1 - Fähler, S. T1 - Materials for Thermomagnetic Harvesting of Low Temperature Waste Heat: N2 - Thermomagnetic materials are a new type of magnetic energy materials, which enable the conversion of low temperature waste heat to electricity by three routes: Thermomagnetic motors, generators and microsystems. Taking our recent work on thermomagnetic generators as a starting point, in this talk we analyse the material requirements for a more energy and economic efficient conversion. We will describe the influence of magnetisation change and heat capacity on thermodynamic efficiency, as well as the consequences of thermal conductivity on power density. Our analysis will allow selecting the best thermomagnetic materials in Ashby plots and illustrate the substantial different properties compared to magnetocaloric materials. Supported by DFG, project FA 453/14) T2 - TMS Annual Meeting CY - San Diego, CA, USA DA - 23.02.2020 KW - Materials science KW - Energy harvesting PY - 2020 AN - OPUS4-51904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krautz, M. A1 - Beyer, L. A1 - Funk, Alexander A1 - Waske, Anja A1 - Weise, B. A1 - Freudenberger, J. A1 - Gottschall, T. T1 - Predicting the dominating factors during heat transfer in magnetocaloric composite wires JF - Materials & Design N2 - Magnetocaloric composite wires have been studied by pulsed-field measurements up to μ0ΔH = 10 T with a typical rise time of 13 ms in order to evaluate the evolution of the adiabatic temperature change of the core, ΔTad, and to determine the effective temperature change at the surrounding steel jacket, ΔTeff, during the field pulse. An inverse thermal hysteresis is observed for ΔTad due to the delayed thermal transfer. By numerical simulations of application-relevant sinusoidal magnetic field profiles, it can be stated that for field-frequencies of up to two field cycles per second heat can be efficiently transferred from the core to the outside of the jacket. In addition, intense numerical simulations of the temperature change of the core and jacket were performed by varying different parameters, such as frequency, heat capacity, thermal conductivity and interface resistance in order to shed light on their impact on ΔTeff at the outside of the jacket in comparison to ΔTad provided by the core. KW - Composite KW - Heat transfer KW - Numerical simulation KW - Pulsed magnetic field PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-513791 DO - https://doi.org/10.1016/j.matdes.2020.108832 VL - 193 SP - 108832 PB - Elsevier Ltd. AN - OPUS4-51379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Anwendungsaspekte magnetischer Funktionsmaterialien: Untersuchungen mit Computertomographie N2 - In diesem Vortrag wird am Beispiel magnetischer Werkstoffe zur Energiewandlung gezeigt, wie röntgentomographische Untersuchungen zur Strukturaufklärung in Kompositen und Massivproben beitragen können. Die Bauteile werden zerstörungsfrei geprüft, um Risse, Poren und andere Defekte und ihren Einfluss auf die funktionellen Eigenschaften dreidimensional und rechtzeitig im Lebenszyklus des Werkstoffs zu charakterisieren. Kombiniert man Mikrotomographie mit anderen Methoden der magnetischen Werkstoffcharakterisierung, lassen sich einzigartige Aussagen über den Aufbau und die funktionellen Eigenschaften treffen. T2 - Werkstoffwoche CY - Dresden, Germany DA - 18.09.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Magnetocaloric KW - Material Science KW - Non-Destructive testing PY - 2019 AN - OPUS4-50175 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe A1 - Grunwald, Marcel A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - TU Chemnitz Vortrag CY - Chemnitz, Germany DA - 04.11.2019 KW - X-Ray Imaging KW - Additive Manufacturing KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50150 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Funk, Alexander A1 - Moosavi, Robabeh A1 - Redmer, Bernhard A1 - Nazarzadehmoafi, Maryam A1 - Jaenisch, Gerd-Rüdiger A1 - Zscherpel, Uwe T1 - X-ray non-destructive testing of materials and composites N2 - Using magnetic materials for energy conversion as an example, this lecture shows how X-ray tomography investigations can contribute to structure elucidation in composites and solid samples. The components are tested non-destructively in order to characterize cracks, pores and other defects and their influence on the functional properties three-dimensionally and in good time in the life cycle of the material. If you combine microtomography with other methods of magnetic material characterization, you can make unique statements about the structure and the functional properties. T2 - Dcms CY - Stockholm, Sweden DA - 28.08.2019 KW - X-Ray imaging KW - Additive Manufacturing KW - Magnetocoloric KW - Material Science KW - Non-destructive testing PY - 2019 AN - OPUS4-50151 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja A1 - Dzekan, D. A1 - Stork, A. A1 - Sellschopp, K. A1 - Berger, D. A1 - Nielsch, K. A1 - Fähler, S. T1 - A thermomagnetic generator with novel magnetic field topology N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - 2019 Joint MMM-Intermag Conference CY - Washington, DC, USA DA - 14.01.2019 KW - Energy harvesting KW - Magnetocaloric KW - Materials Science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50152 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Waske, Anja T1 - Energy harvesting using thermomagnetic generators with magnetocaloric materials N2 - To date, there are only very few technologies available for the conversion of low temperature waste heat to electricity. In this talk, we first describe the principle of thermomagnetic generators. Then we focus on the impact of topology of the magnetic circuit within thermomagnetic generators. We demonstrate that the key operational parameters strongly depend on the genus, i.e. the number of holes within the magnetic circuit. T2 - JEMS 2019 CY - Uppsala, Sweden DA - 26.08.2019 KW - Energy harvesting KW - Magnetocaloric KW - Materials science KW - Non-destructiv testing PY - 2019 AN - OPUS4-50153 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -