TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 U6 - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Markötter, Henning A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Evsevleev, Sergei A1 - Arlt, T. A1 - Ulbricht, Alexander A1 - Dayani, Shahabeddin A1 - Bruno, Giovanni T1 - A Review of X-Ray Imaging at the BAMline (BESSY II) N2 - The hard X-ray beamline BAMline at BESSY II (Berlin, Germany) has now been in service for 20 years. Several improvements have been implemented in this time, and this review provides an overview of the imaging methods available at the BAMline. Besides classic full-field synchrotron X-ray computed tomography (SXCT), also absorption edge CT, synchrotron X-ray refraction radiography (SXRR), and synchrotron X-ray refraction tomography (SXRCT) are used for imaging. Moreover, virtually any of those techniques are currently coupled in situ or operando with ancillary equipment such as load rigs, furnaces, or potentiostats. Each of the available techniques is explained and both the current and the potential usage are described with corresponding examples. The potential use is manifold, the examples cover organic materials, composite materials, energy-related materials, biological samples, and materials related to additive manufacturing. The article includes published examples as well as some unpublished applications. KW - Material science KW - Radiography KW - Refraction KW - Tomography KW - X-ray imaging PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572417 SN - 1438-1656 SP - 1 EP - 22 PB - Wiley VHC-Verlag AN - OPUS4-57241 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mouiya, M. A1 - Martynyuk, M. A1 - Kupsch, Andreas A1 - Laquai, R. A1 - Müller, Bernd R. A1 - Doyen, N.T. A1 - Tamraoui, Y. A1 - Serrano Munoz, Itziar A1 - Huger, M. A1 - Kachanov, M. A1 - Bruno, Giovanni T1 - The stress–strain behavior of refractory microcracked aluminum titanate: The effect of zigzag microcracks and its modeling N2 - The stress–strain behavior of ceramics, such as aluminum titanate, has certain features that are unusual for brittle materials—in particular, a substantial nonlinearity under uniaxial tension, and load–unload hysteresis caused by the sharp increase of the incremental stiffness at the beginning of unloading. These features are observed experimentally and are attributed to microcracking. Here we compare different degrees of stress–strain nonlinearity of aluminum titanate materials and quantitatively model them. We use advanced mechanical testing to observe the mechanical response at room and high temperature; electron microscopy, and X-ray refraction radiography to observe the microstructural changes. Experiments show that two types of microcracks can be distinguished: (i) microcracks induced by cooling from the sintering temperature (due to heterogeneity and anisotropy of thermal expansion), with typical sizes of the order of grain size, and (ii) much larger microcracks generated by the mechanical loading. The two microcrack types produce different effects on the stress–strain curves. Such microcracks and the features of the stress–strain behavior depend on the density of the cooling-induced microcracks and on the distribution of grain sizes. They are modeled analytically and numerically. KW - Hystersis KW - Nonlinear stress-strain curve KW - Refractory KW - Stiffness KW - X-ray refraction PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-580517 SN - 1551-2916 VL - 106 SP - 6995 EP - 7008 PB - Wiley-Blackwell CY - Oxford [u.a.] AN - OPUS4-58051 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wang, Y. A1 - Ulbricht, Alexander A1 - Schmidt, F. A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Schwitalla, A.D. T1 - Micro-CT analysis and mechanical properties of low dimensional CFR-PEEK specimens additively manufactured by material extrusion N2 - Material extrusion of thermoplastic polymers enables the realization of complex specific designs with high performance composites. The present study aims at evaluating the mechanical properties of carbon fiberreinforced semi-crystalline thermoplastic polymer polyether ether ketone (CFR-PEEK) manufactured by material extrusion and correlating them with results obtained by micro-CT. Samples in the shape of small bars were provided by Kumovis (Munich, Germany). The determination of surface roughness and density was followed by three-point bending tests. To reveal the pore distribution as well as the fusion quality of CFR PEEK when applied with external forces, micro-CT scans were performed with an X-ray microscope before and after the mechanical test to localize the sites where the fracture is generated. The density of CFR-PEEK bars indicated that they had superior mechanical properties compared with our previous study on unfilled 3D printed PEEK (bending modulus: (5.4 ± 0.5) GPa vs. (1.05 ± 0.05) GPa to (1.48 ± 0.10) GPa; bending strength: (167 ± 11) MPa vs. (51 ± 15) to (193 ± 7) MPa). Micro-CT analyses revealed the local 3D-distribution of voids. Voids of 30 μm diameter are nearly spherical and make up the main part of the total porosity. The larger the voids, the more they deviate from a spherical shape. Significant lack-of-fusion voids are located between the deposited filaments. By growing and merging, they act as seeds for the forming fracture line in the region of the flexural specimens where the maximum local tensile stresses occurred under bending load. Our work provides a detailed analysis of printed PEEK with fiber additive and relates this with mechanical properties. KW - CFR-PEEK KW - Material extrusion (MEX) KW - FFF KW - Surface topography KW - Bending property KW - Micro-CT PY - 2023 U6 - https://doi.org/10.1016/j.jmbbm.2023.106085 SN - 1751-6161 VL - 146 SP - 1 EP - 9 PB - Elsevier Ltd. AN - OPUS4-58112 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Microstructure characterization of materials using X-ray refraction techniques N2 - X-ray refraction is an excellent tool for the characterization of the microstructure of materials. However, there are only a few (synchrotron) laboratories in the world that use this technique for material characterisation. Therefore, the seminar will first explain the basic principles of X-ray refraction and the measurement techniques installed at the hard X-ray beamline BAMline at BESSY II (Berlin, Germany). This is followed by examples of investigations on fibre-reinforced plastic composites (CFRP) as well as ceramic (Cordierite, ZrO2-SiO2) and metallic materials (Ti-6Al-4V, Inconel). Some of the investigations were carried out both ex-situ and in-situ under mechanical and thermal load. The results are correlated with the mechanical properties of the materials. T2 - LNLS Users Group Seminar Series CY - Campinas, Brasil DA - 25.10.2022 KW - X-ray refraction KW - Analyzer-Based Imaging KW - BAMline PY - 2022 AN - OPUS4-56117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging N2 - While the problem of the identification of mechanisms of hydrogen assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. In this work, we show how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in literature, but this time using a non-destructive technique, we show that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, we deduce that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. We show that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and we deduce that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - Hydrogen embrittlement KW - Synchrotron radiation KW - X-ray refraction KW - Computed tomography KW - Microcracking PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542811 SN - 1438-1656 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54281 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Roveda, Ilaria A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Synchrotron X-ray refraction detects microstructure and porosity evolution during in-situ heat treatments N2 - For the first time, synchrotron X-ray refraction radiography (SXRR) has been paired with in-situ heat treatment to monitor microstructure and porosity evolution as a function of temperature. The investigated material was a laser powder bed fusion (LPBF) manufactured AlSi10Mg, where the initial eutectic Si network is known to disintegrate and spherodize into larger particles with increasing temperature. Such alloy is also prone to thermally induced porosity (TIP). We show that SXRR allows detecting the changes in the Si-phase morphology upon heating, while this is currently possible only using scanning electron microscopy. SXRR also allows observing the growth of pores, usually studied via X-ray computed tomography, but on much smaller fields-of-view. Our results show the great potential of in-situ SXRR as a tool to gain in-depth knowledge of the susceptibility of any material to thermally induced damage and/or microstructure evolution over statistically relevant volumes. KW - Synchrotron X-ray refraction radiography KW - Si network disintegration KW - Thermally induced porosity (TIP) KW - Laser powder bed fusion (LPBF) KW - Statistically relevant volumes KW - AlSi10Mg alloy PY - 2022 U6 - https://doi.org/10.1016/j.msea.2022.142732 SN - 0921-5093 VL - 838 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam AN - OPUS4-54297 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kupsch, Andreas A1 - Laquai, René A1 - Müller, Bernd R. A1 - Paciornik, S. A1 - Horvath, J. A1 - Tushtev, K. A1 - Rezwan, K. A1 - Bruno, Giovanni T1 - Evolution of Damage in All-Oxide Ceramic Matrix Composite After Cyclic Loading N2 - While structural ceramics usually display a brittle mechanical behavior, their composites may show nonlinearities, mostly due to microcracking. Herein, the stiffness evolution of a sandwich-like laminate of an Al2O3 15%vol. ZrO2 matrix reinforced with Nextel 610 fibers is studied as a function of number of cycles N in tension. The stiffness of the composite degrades with increasing N, indicating microcracking. However, synchrotron X-ray refraction radiography shows that the internal specific surface of such cracks varies differently. A modeling strategy is developed for the calculation of the equivalent stiffness of mixtures (first the matrix and then the sandwich), based on the Voigt and Reuß schemes. The Bruno–Kachanov model is then used to estimate the initial microcrack density in the matrix (due to the thermal expansion mismatch) and the amount of microcracking increase upon cyclic loading. The stiffness in the composite degrades dramatically already after 20 000 cycles but then remains nearly constant. The combination of mechanical testing, quantitative imaging analysis, and modeling provides insights into the damage mechanisms acting: microcrack propagation is more active than microcrack initiation upon cyclic loading, but the second also occurs. This scenario is similar but not equal to previous results on porous and microcracked ceramics. KW - Ceramic matrix composites KW - Homogenization schemes KW - Microcracking KW - Nonlinear behavior KW - Synchrotron X-ray refraction radiography PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-534541 SN - 1527-2648 SN - 1438-1656 VL - 24 IS - 6 SP - 2100763 -1 EP - 2100763 -13 PB - VCH GmbH CY - Weinheim AN - OPUS4-53454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Soares, A.P. A1 - Baum, D. A1 - Hesse, B. A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Zaslansky, P. T1 - Scattering and phase-contrast X-ray methods reveal damage to glass fibers in endodontic posts following dental bur trimming N2 - Objectives. There is concern that the integrity of fiberglass dental posts may be affected by chairside trimming during treatment. We hypothesize that hard X-ray methods of phase contrast-enhanced micro-CT (PCE-CT) and synchrotron based X-ray refraction (SXRR) can reliably identify and help characterize the extent of damage. Methods. Fiberglass posts were imaged both as manufactured and following trimming with a diamond bur. Each of the posts was imaged by SXRR and by PCE-CT. Datasets from PCE-CT were used to visualize and quantify 2D and 3D morphological characteristics of intact and of damage-affected regions caused by trimming. Results. The SXRR images revealed fiber inhomogeneities from manufacturing with a significant increase in internal surfaces in sample regions corresponding to damage from trimming. PCE-CT volumes unveiled the micromorphology of single fibers in the posts and some damage in the trimmed area (e.g. fractures, splinters and cracks). Area, perimeter, circularity, roundness, volume and thickness of the glass fibers in the trimmed area were statistically different from the control (p < 0.01). Significance. The integrity of single fibers in the post is critical for bending resistance and for long-term adhesion to the cement in the root canals. Damage to the fibers causes substantial structural weakening across the post diameter. Glass fragments produced due to contact with the dental bur may separate from the post and may significantly reduce bond capacity. The above mentioned synchrotron-based imaging techniques can further facilitate assessment of the structural integrity and the appearance of defects in posts (e.g. after mechanical load). KW - Fiberglass composite KW - Fiber reinforced dental post KW - X-ray refraction KW - Phase contrast-enhanced micro-CT KW - Non-destructive testing PY - 2021 U6 - https://doi.org/10.1016/j.dental.2020.10.018 SN - 0109-5641 VL - 37 IS - 2 SP - 201 EP - 211 PB - Elsevier Inc. AN - OPUS4-52071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Laquai, René A1 - Müller, Bernd R. A1 - Schneider, J. A1 - Kupsch, Andreas A1 - Bruno, Giovanni T1 - Using SXRR to Probe the Nature of Discontinuities in SLM Additive Manufactured Inconel 718 Specimens N2 - The utilization of additive manufacturing (AM) to fabricate robust structural components relies on understanding the nature of internal anomalies or discontinuities, which can compromise the structural integrity. While some discontinuities in AM microstructures stem from similar mechanisms as observed in more traditional processes such as casting, others are unique to the AM process. Discontinuities in AM are challenging to detect, due to their submicron size and orientation dependency. Toward the goal of improving structural integrity, minimizing discontinuities in an AM build requires an understanding of the mechanisms of formation to mitigate their occurrence. This study utilizes various techniques to evaluate the shape, size, nature and distribution of discontinuities in AM Inconel 718, in a non-hot isostatic pressed (HIPed) as-built, non-HIPed and direct age, and HIPed with two step age samples. Non-destructive synchrotron radiation refraction and transmission radiography (SXRR) provides additional information beyond that obtained with destructive optical microscopy. SXRR was able to distinguish between voids, cracks and lack of melt in, due to its sensitivity to the orientation of the discontinuity. KW - Additive manufacturing KW - X-ray refraction radiography KW - INCONEL 718 KW - Selective laser melting PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-509836 SN - 1543-1940 VL - 51 IS - 8 SP - 4146 EP - 4157 PB - Springer AN - OPUS4-50983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -