TY - JOUR A1 - Fardan, Ahmed A1 - Fazi, Andrea A1 - Peng, Ru Lin A1 - Mishurova, Tatiana A1 - Thuvander, Mattias A1 - Bruno, Giovanni A1 - Brodin, Håkan A1 - Hryha, Eduard T1 - Fine-Tuning Melt Pools and Microstructures: Taming Cracks in Powder Bed Fusion—Laser Beam of a non-weldable Ni-base Superalloy N2 - Powder Bed Fusion – Laser Beam (PBF-LB) of high γ’ strengthened Ni-base superalloys, such as CM247LC, is of great interest for high temperature applications in gas turbines. However, PBF-LB of CM247LC is challenging due to the high cracking susceptibility during PBF-LB processing (solidification cracking) and heat treatment (strain age cracking, mostly caused by residual stresses). This study focuses on understanding the impact of process parameters on microstructure, residual stresses and solidification cracking. Laser power (P), speed (v) and hatch spacing (h) were varied while the layer thickness (t) was fixed. The melt pool size and shape were found to be key factors in minimizing solidification cracking. Narrower and shallower melt pools, achieved using a low line energy density (LED = P/v ≤ 0.1 J/mm), gave low crack densities (0.7 mm/mm2). A tight hatch spacing (h = 0.03 mm) resulted in reduced lack of fusion porosity. Electron backscatter diffraction investigations revealed that parameters giving finer microstructure with 〈100〉crystallographic texture had low crack densities provided they were processed with a low LED. Atom probe tomography elucidated early stages of spinodal decomposition in the as-built condition, where Cr and Al cluster separately. The extent of spinodal decomposition was found to be affected by the LED and the hatch spacing. Samples with low LED and small hatch spacing showed higher degrees of spinodal decomposition. X-ray diffraction residual stress investigations revealed that the residual stress is proportional to the volumetric energy density (VED = P/(v. h. t)). Although low residual stresses can be achieved by using low VED, there is a high risk of lack of fusion. Hence, other parameters such as modified scan strategy, build plate pre-heating and pulsed laser mode, must be further explored to minimize the residual stresses to reduce the strain age cracking susceptibility. KW - Additive manufacturing KW - X-ray CT KW - Non-weldable superalloy KW - Solidification cracking PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597340 VL - 34 IS - 102059 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-59734 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Bruno, Giovanni ED - Makul, Matt T1 - Investigation of a New Ti Alloy for a New Generation of Additively Manufactured Implants with Lattice N2 - A new titanium alloy improving the operation of implants additively manufactured and including laterally closed lattice structures is proposed. The new alloy possesses an increased affinity to the bone. The measured bone–interface implant (BII) of less than 10 mm and bone–implant contact (BIC) of 95% demonstrated an excellent osseointegration. Furthermore, since additive manufacturing naturally leads to a high-roughness surface finish, the wettability of the implant is increased. The combination of these factors is pushing ossification beyond its natural limits. In addition, the quality and speed of the ossification and osseointegration in/around laterally closed lattice implants open the possibility of bone spline key of prostheses. This enables the stabilization of the implant into the bone while keeping the possibility of punctual hooks allowing the implant to be removed more easily if required. KW - X-ray Computed tomography KW - Defects KW - Machine Learning KW - Implants KW - Lattices PY - 2024 U6 - https://doi.org/10.9734/bpi/cpstr/v7/7198E VL - 7 SP - 12 EP - 37 AN - OPUS4-59754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Roveda, Ilaria A1 - Mishurova, Tatiana A1 - Evans, Alexander A1 - Fitch, Andrew N. A1 - Haubrich, Jan A1 - Requena, Guillermo A1 - Bruno, Giovanni A1 - Serrano‐Munoz, Itziar T1 - Evolution of interphase stress over a crack propagation plane as a function of stress relief heat treatments in a PBF‐LB/M AlSi10Mg alloy N2 - AbstractIn this study, we compare the residual stress state in a laser powder bed fusion (PBF‐LB/M) AlSi10Mg alloy in the as‐built (AB) condition with that after two different heat treatments (265 °C for 1 h, HT1; and 300 °C for 2 h, HT2). The bulk residual stress (RS) is determined using synchrotron X‐ray diffraction (SXRD), and near‐surface profiles are determined using laboratory energy‐dispersive X‐ray diffraction (EDXRD). The EDXRD results do not reveal any notable difference between the conditions at a depth of 350 μm, suggesting that the machining process yields a comparable residual stress state in the near‐surface regions. On the other hand, the SXRD results show that HT1 is more effective in relieving the bulk RS. It is observed that HT1 reduces the RS state in both the aluminium matrix and the silicon network. In addtion, HT2 does not have a significant impact on relaxing the RS as‐built state of the matrix, although it does induce a reduction in the RS magnitudes of the Si phase. It is concluded that the heat treatment stress relieving is effective as long as the Si‐network is not disaggregated. KW - Interphase residual stress KW - Laboratory energy-dispersive X-ray diffraction (EDXRD) KW - PBFLB/M AlSi10Mg alloy KW - Stress-relief heat-treatments KW - Synchrotron X-ray diffraction (SXRD) PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597591 SP - 1 EP - 13 PB - John Wiley & Sons Ltd. AN - OPUS4-59759 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Cabo Rios, Alberto A1 - Mishurova, Tatiana A1 - Cordova, Laura A1 - Persson, Mats A1 - Bruno, Giovanni A1 - Olevsky, Eugene A1 - Hryha, Eduard T1 - Ex-situ characterization and simulation of density fluctuations evolution during sintering of binder jetted 316L N2 - Efficient density evolution during sintering of the as-printed component is vital to reach full densification and required properties of binder jet (BJT) components. However, due to the high porosity and brittle nature of the green compact, analysis of the microstructure development during sintering is very difficult, resulting in lack of understanding of the densification process. Density development from green state (57 ± 1.6 %) up to full density (99 ± 0.3 %) was characterized by high-resolution synchrotron X-Ray computed tomography (SXCT) on BJT 316L samples from ex-situ interrupted sintering tests. Periodicity of density fluctuations along the building direction was revealed for the first time and was related to the layer thickness of ~ 42 μm during printing that decreased down to ~ 33 μm during sintering. Sintering simulations, utilizing a continuum sintering model developed for BJT, allowed to replicate the density evolution during sintering with a mean error of 2 % and its fluctuation evolution from green (1.66 %) to sintered (0.56 %) state. Additionally, simulation of extreme particle size segregation (1 μm to 130 μm) suggested that non-optimized printing could lead to undesirable density fluctuation amplitude rapid increase (~10 %) during sintering. This might trigger the nucleation of defects (e.g., layer delamination, cracking, or excessive residual porosity) during the sintering process. KW - Additive manufacturing KW - Synchrotron X-ray CT KW - Binder Jetting KW - Sintering KW - FEM Simulation PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-594389 SN - 0264-1275 VL - 238 SP - 1 EP - 18 PB - Elsevier AN - OPUS4-59438 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Silvestroni, L. A1 - Kupsch, Andreas A1 - Müller, B. R. A1 - Ulbricht, Alexander A1 - Wieder, Frank A1 - Fritsch, Tobias A1 - Sciti, D. A1 - Bruno, Giovanni T1 - Determination of short carbon fiber orientation in zirconium diboride ceramic matrix composites N2 - In fiber-reinforced components, the fiber alignment and orientation have paramount influence on the thermomechanical properties of the resulting composite, for both short and continuous fiber. Here we present the case of an ultra-refractory matrix intended for extreme environment applications, ZrB2, reinforced with 20 vol% and 50 vol% short carbon fibers. In both cases, fibers tend to align perpendicular to the uniaxial pressure applied during shaping and sintering of a pellet, although the fiber tilt across the pellet thickness is difficult to determine. Moreover, for high volume fractions of reinforcement, the spatial distribution of the fibers is heterogeneous and tends to have domains of preferential orientations. We compare the information on the fiber distribution as collected by scanning electron microscopy images, X-ray computed tomography and synchrotron X-ray refraction radiography (SXRR). The three techniques prove to be complementary. Importantly, we demonstrate that SXRR yields the most statistically significant information due to the largest field of view, yet with a sensitivity down to the nanometer, and that can be successfully applied also to heavy matrix materials, such as zirconium boride. KW - Ceramic matrix composites KW - Synchrotron X-ray refraction radiography KW - X-ray computed tomography KW - Scanning electron microscopy KW - High-temperature ceramics PY - 2024 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-597712 SN - 0955-2219 VL - 44 IS - 8 SP - 4853 EP - 4862 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Khrapov, D. A1 - Paveleva, A. A1 - Kozadayeva, M. A1 - Evsevleev, Sergei A1 - Mishurova, Tatiana A1 - Bruno, Giovanni A1 - Surmenev, R. A1 - Koptyug, A. A1 - Surmeneva, M. T1 - Trapped powder removal from sheet-based porous structures based on triply periodic minimal surfaces fabricated by electron beam powder bed fusion N2 - Electron Beam Powder Bed Fusion-manufactured (E-PBF) porous components with narrow pores or channels and rough walls or struts can be filled with trapped powder after the manufacturing process. Adequate powder removal procedures are required, especially for high-density porous structures. In the present research, sheetbased porous structures with different thicknesses based on triply periodic minimal surfaces fabricated by EPBF were subjected to different post-processing methods, including a traditional powder recovery system for EPBF, chemical etching and ultrasound vibration-assisted powder removal. Wall thickness, internal defects, microstructure and morphology features, powder distribution inside the specimens, mechanical properties and deformation modes were investigated. A powder recovery system could not remove all residual powder from dense structures. In turn, chemical etching was effective for surface morphology changes and subsurface layers elimination but not for powder removal, as it affected the wall thickness, considerably influencing the mechanical properties of the whole structure. The ultrasound vibration method was quite effective for the removal of residual powder from sheet-based TMPS structures and without a severe degradation of mechanical properties. 10.1016/j.msea.2022.144479 Ultrasound vibration also caused grain refinement. KW - Additive manufacturing KW - Residual powder removal KW - Ti6Al4V alloy KW - Electron beam powder bed fusion KW - TPMS structures PY - 2023 U6 - https://doi.org/10.1016/j.msea.2022.144479 VL - 862 SP - 1 EP - 16 PB - Elsevier B.V. AN - OPUS4-56564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishurova, Tatiana A1 - Bruno, Giovanni T1 - BAM activities in material characterization by advanced X-ray imaging N2 - The overview of the activity of Federal Institute for Material Research and Testing (BAM, Belin, Germany) in the field of additively manufacturing material characterization will be presented. The research of our group is focused on the 3D imaging of AM materials by means of X-ray Computed Tomography at the lab and at synchrotron, and the residual stress characterization by diffraction (nondestructive technique). Also, two successful research project in collaboration with CAM2, Sweden are presented. T2 - CAM2 Annual Meeting CY - Gothenburg, Sweden DA - 25.10.2023 KW - Additive manufacturing KW - Residual stress KW - X-ray computed tomography PY - 2023 AN - OPUS4-58828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Fernández, R. A1 - Saliwan-Neumann, Romeo A1 - González-Doncel, G. A1 - Bruno, Giovanni T1 - Dislocation structures after creep in an Al-3.85 %Mg alloy studied using EBSD-KAM technique N2 - The electron backscatter diffraction (EBSD) technique is used to investigate the dislocation structures formed after steady-state creep deformation of an Al-3.85%Mg alloy. This material is crept at two different stress levels, corresponding to the so-called power-law and power-law breakdown regimes. The results show that, regardless of the creep stress level, the strain tends to localize, leading to the formation of intragranular bands. The thickness of such bands is larger when the material is tested at loads corresponding to the power-law breakdown. This suggests enhanced diffusion by dislocation pipes. KW - Steady-state creep KW - Al-3.85%Mg alloy KW - Power-law breakdown KW - Electron backscatter diffraction (EBSD) KW - Denoising filter PY - 2023 U6 - https://doi.org/10.1016/j.matlet.2023.133978 SN - 0167-577X VL - 337 SP - 1 EP - 4 PB - Elsevier B.V. AN - OPUS4-56941 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mehta, B. A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Markötter, Henning A1 - Bruno, Giovanni A1 - Hryha, E. A1 - Nyborg, L. A1 - Virtanen, E. T1 - Microstructure, mechanical properties and fracture mechanisms in a 7017 aluminium alloy tailored for powder bed fusion – laser beam N2 - This study addressed a 7017 Al-alloy tailored for powder bed fusion – laser beam (PBF-LB) process. The alloy was prepared by mixing 3 wt% Zr and 0.5 wt% TiC powder to standard pre-alloyed 7017 grade aluminium powder. This made printing of the alloys possible avoiding solidification cracking in the bulk and achieving high relative density (99.8 %). Such advanced alloys have significantly higher Young’s modulus (>80 GPa) than conventional Al-alloys (70–75 GPa), thus making them attractive for applications requiring high stiffness. The resulting microstructure in as-printed condition was rich in particles originating from admixed powders and primary precipitates/inclusions originating from the PBF-LB process. After performing a T6-like heat treatment designed for the PBF-LB process, the microstructure changed: Zr-nanoparticles and Fe- or Mg/Zn- containing precipitates formed thus providing 75 % increase in yield strength (from 254 MPa to 444 MPa) at the cost of decreasing ductility (∼20 % to ∼9 %). In-situ tensile testing combined with SXCT, and ex-situ tensile testing combined with fracture analysis confirmed that the fracture initiation in both conditions is highly dependent on defects originated during printing. However, cracks are deflected from decohesion around Zr-containing inclusions/precipitates embedded in the Al-matrix. This deflection is seen to improve the ductility of the material. KW - Additive manufacturing KW - Powder bed fusion Laser beam KW - X-ray computed tomography KW - Strengthening mechanisms KW - Crack propagation KW - Zirconium PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-568243 SN - 0264-1275 VL - 226 SP - 1 EP - 14 PB - Elsevier Science CY - Amsterdam [u.a.] AN - OPUS4-56824 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rieder, Philipp A1 - Petrich, Lukas A1 - Serrano Munoz, Itziar A1 - Fernández, Ricardo A1 - Bruno, Giovanni A1 - Schmidt, Volker T1 - Statistical Comparison of Substructures in Pure Aluminum Before and After Creep Deformation, Based on EBSD Image Data N2 - Electron backscatter diffraction (EBSD) images of extruded pure aluminum were statistically analyzed to investigate creep-induced subgrain structures after applying two different levels of creep stress, corresponding to the power law (PL) and power-law breakdown (PLB) regimes. Kernel average misorientation analysis of EBSD measurements revealed 2D morphologies, which were subdivided by a multi-step segmentation procedure into subgranular arrangements. Various descriptors were employed to characterize the “subgrains” quantitatively, including their size, shape, spatial arrangement, and crystallographic orientation. In particular, the analysis of the orientations of subgrains was conducted by neglecting rotations around the loading axis. This approach facilitated the individual investigation of the {001} and {111} subgrain families with respect to the loading axis for two investigated stress levels plus a reference specimen. For the PL regime, the statistical analysis of subgrain descriptors computed from segmented image data revealed a similar degree of strain accumulation for {111} and {001} subgrains. In contrast, for the PLB regime, the analyzed descriptors indicate that {111} subgrains tend to accumulate significantly more strain than {001} ones. These observations suggest that the mechanisms leading to PLB may be associated with strain localization dependent on intergranular stress, hindering the recovery process within {111} grains. KW - Crystallographic descriptor KW - Dislocation-climb-controlled creep KW - Electron backscatter diffraction (EBSD) KW - Geometric descriptor KW - Ernel average misorientation (KAM) KW - pure aluminum KW - Qquantification and segmentation KW - Statistical image analysis KW - subgrain PY - 2023 U6 - https://doi.org/10.1093/micmic/ozad121 SN - 1431-9276 SP - 1 EP - 12 PB - Oxford University Press AN - OPUS4-58730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -