TY - CONF A1 - Stelzner, Ludwig A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Powierza, Bartosz T1 - Transport and reconfiguration of moisture in HPC due to unilateral heating T2 - Proceedings of the 6th International Workshop on Concrete Spalling due to Fire Exposure N2 - Explosive spalling is caused by, among others, the thermohydraulic spalling mechanism. During this process, vaporization, dehydration, moisture-transport and condensation processes interact. As a result, a drying and dehydration zone as well as a saturated zone, known as a moisture clog, are observed inside the unilaterally-heated concrete. The presented research is focused on the experimental investigation of the underlying thermohydraulic processes. To investigate these, a test methodology based on X-ray computed tomography (CT) and nuclear magnetic resonance (NMR) was developed. Thereby, the X-ray CT scans are carried out simultaneously during the application of a defined unilateral-heating regime on a specially-constructed specimen. This miniaturized specimen, equipped with a double-layer casing, reproduces the condition within a planar, unilaterally-heated building component. A preliminary test methodology and the first experimental results were presented at the 5th International Workshop on Concrete Spalling in Borås, Sweden (2017). The contribution for the upcoming workshop presents an improved version of this test methodology and new results for a high-performance concrete (HPC) mixture exposed to temperatures up to 500 °C. Regarding the CT measurements, a higher time-resolution of 15 min was achieved and a quantification of the moisture changes was implemented. Due to an increase in signal quality of the NMR measurements, a pore-size specific moisture distribution can now be resolved. This allows to conclude about the moisture reconfiguration between small gel pores and larger interhydrate pores. Additionally, the NMR measurement are no longer limited to first 2.5 cm below the heated surface but a one-dimensional moisture distribution can now be estimated over the whole 10 cm long specimen. The presented results demonstrate that the combination of X-ray CT and NMR measurements enables to image and quantify the thermally-induced moisture transport and reconfiguration from small gel pores up to macro pores. This provides important insights into the thermohydraulic damage mechanism and leads to a better understanding of spalling avoidance strategies, like the addition of polypropylene fibres. T2 - 6th International Workshop on Concrete Spalling due to fire exposure CY - Sheffield, UK DA - 19.09.2019 KW - Moisture clog KW - X-ray CT KW - NMR KW - Moisture transport KW - HPC PY - 2019 UR - https://firespallingworkshop2019.group.shef.ac.uk/wp-content/uploads/2019/09/Fire-Spalling-Workshop_Proceedings.pdf SN - 978-1-5272-4135-0 SP - 181 EP - 190 CY - Sheffield AN - OPUS4-49161 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Weise, Frank A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Meng, Birgit T1 - Analysis of moisture transport in unilateral-heated dense high-strength concrete T2 - Proceedings from the 5th International Workshop on Concrete Spalling N2 - Unilateral thermal exposure of concrete building components induces moisture transport processes that have a significant influence on the spalling behaviour of dense high-strength concrete (HSC). These transport processes are based on evaporation and condensation mechanisms of liquid and gaseous water in the pores as well as the chemically bound water within the concrete. The low permeability of HSC and the formation of a saturated zone within building components (also known as a moisture clog) leads to high water-vapour pressures, which contributes to explosive spalling. The formation of these pressures has already been verified by means of pore-pressure measurement techniques. In addition, the redistribution of the moisture within concrete specimens subject to unilateral thermal exposure has been demonstrated on fractured surfaces. Investigations by means of the nuclear magnetic resonance (NMR) relaxometry technique and neutron radiography have shown one-dimensional changes in moisture distribution during thermal exposure. However, none of these methods has been able to depict the moisture distribution in three dimensions (3D), so the link between pore size, concrete micro-structure and moisture content is missing. The research project presented in this paper aims to fill this gap by developing a new multi-level test methodology to characterise non-destructively the temporal course of spatial moisture distribution during unilateral thermal exposure. The procedure used during this programme included the collection of X-ray 3D-computed tomography (CT) measurements using a miniaturised specimen subjected to in-situ thermal exposure and the comparison of those CT results with the results of one-dimensional NMR-relaxometry before and after the heating process. In the first step, a mobile heating device was developed, built and tested. To simulate a unilaterally-heated construction component, a cylindrical specimen made of HSC (Ø = 40 mm, L = 100 mm) was cast into an impermeable glass ceramic shell. The ceramic shell ensured a one-dimensional moisture flux and limited the thermal expansion of the concrete. An additional high-temperature wool (HTW) insulating shell ensured a one-dimensional heat flux. The heating device, which operated using infrared radiation (IR), allowed the unilateral heating of the specimens up to 300 °C using variable heating regimes. In the second step, the mobile heating device was integrated into the CT-scanner, which enabled the collection of measurements before, during and after heating. By subtraction of successive 3D-CT images, X-ray attenuation differences could be resolved three-dimensionally in the specimen and interpreted as changes in the moisture content. Initial results show that this test methodology can monitor the 3D changes of moisture content inside the specimen during thermal exposure. It enables the researcher to visualise areas with moisture accumulation as well as dehydrated areas inside the specimen. Comparative one-dimensional NMR-relaxometry measurements confirm the results of the CT image analysis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Spalling KW - Fire KW - Moisture clog KW - Moisture transport KW - HPC KW - HSC KW - X-ray CT KW - NMR KW - NDT PY - 2017 SN - 0284-5172 SP - 227 EP - 239 AN - OPUS4-42983 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -