TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Tribological and thermal behavior of laser implanted tool surfaces for hot stamping AlSi coated 22MnB5 sheets N2 - In the automotive industry, the development of electrically powered vehicles has become a major forward-looking topic. For improving the range and thus the efficiency of electric cars, lightweight construction has gained even more importance. In this regard, hot stamping has been established as a suitable and resource efficient process to manufacture high-strength and lightweight body-in-white components. This method combines hot forming and quenching of boron-manganese steel 22MnB5 in a single process step. As a result, complex structures with thin sheet thicknesses and high ultimate tensile strength up to 1500 MPa are generated. However, the use of lubricants is not possible at elevated temperatures, which subsequently leads to high thermo-mechanical tool stresses. As a side effect, high friction and severe wear occur during the forming process, which affect the resulting part quality and maximum tool life. Therefore, the aim of this study is to improve the tribological performance of hot stamping tools by using a laser implantation process. This technique is based on manufacturing highly wear resistant, separated and elevated structures in micrometer range by embedding hard ceramic particles into the tool material via pulsed laser radiation. As a result, highly stressed areas on the tool surface can be modified locally, which in turn influence the tribological and thermal behavior during the forming process. In this regard, laser implanted and conventionally tool surfaces were investigated under hot stamping conditions. A modified pin-on-disk test was used to analyze the friction coefficient and occuring wear mechanisms. Furthermore, quenching tests as well as hardness measurements were carried out to gain in-depth knowledge about the cooling behavior of the modified tool surfaces and its impact to the resulting mechanical part properties. KW - Laser implantation KW - Laser dispersing KW - Surface structuring KW - Hot stamping PY - 2022 U6 - https://doi.org/10.4028/p-e4i60t SN - 1662-9507 IS - 414 SP - 69 EP - 74 PB - Trans Tech Publications CY - Baech AN - OPUS4-54302 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser surface treatments of metals: State of the art and new developments N2 - Localized laser surface treatments are able to produce tailor-made surface properties to fulfill requirements of a variety of technical applications. Especially micrometric surface topologies can be beneficial for optimizing tribological contact situations. Structures with lowered surface features are already utilized for bearings or cylinders of combustion engines. There are also other fields of application, where the potential of protruding surface features is known, e. g. for metal forming tools. A promising approach for a tailored surface treatment working in the microsecond range is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This technique is able to produce micrometric surface structures and to improve simultaneously the wear resistance by creating metal matrix composites. In this talk, the laser implantation technique is described and compared to the state of the art. The potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces is demonstrated by means of microstructural and topographical investigations of different ceramic materials and steel substrates. Finally, results of research projects are presented aiming on the application of such structured surfaces. Their capability to change and optimize friction and wear are demonstrated for fully lubricated contacts, tools for hot sheet metal forming and tools for cold rolling of sheets for automotive applications. T2 - 10th International Conference on Laser Applications (ICLA 10) CY - Cairo, Egypt DA - 23.11.2019 KW - Tool steel KW - Laser implantation KW - Laser surface texturing KW - Laser dispersing PY - 2019 AN - OPUS4-49959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Hilgenberg, Kai T1 - Dispersion behavior of TiB2 particles in AISI D2 tool steel surfaces during pulsed laser dispersing and their influence on material properties N2 - AISI D2 is one of the most applied cold-working tool steel for deep drawing operations, due to the materials good toughness and high wear resistance. However, since the lubricant-free deep drawing as well as the processing of high strength and ultra-high strength steel sheets remaining ongoing trends in the automotive industry, the tool surfaces need to be improved regarding their friction and wear behavior. For this purpose elevated micro textures can be applied. Since protruded micro features are predominantly affected by wear, a structuring process enabling the formation of suitable textures with high wear resistance is needed. In this paper surface texturing at microscale was conducted by laser implantation. This technique allows the fabrication of highly wear resistant, separated and elevated features (implants) on steel surfaces via a discontinuous dispersing of ceramic particles by pulsed laser radiation. The aim of this study was to investigate the techniques potential for the creation of wear resistant elevated micro features on AISI D2 tool steel surfaces by the application of TiB2 particles. The laser parameters (pulse power and length) were varied and a comparative material analysis on AISI D2 laser remelted spots and TiB2 localized dispersed zones was examined. High-speed camera recordings allowed the description of the particle insertion mechanism from pre-coatings during laser processing. Mechanical properties were analyzed by (micro-) hardness measurements at top and cross sections. The microstructure was investigated by optical microscopy, scanning electron microscopy (SEM), energy dispersive Xray spectroscopy (EDX) and X-ray diffraction (XRD). The implants geometrical properties (diameter, height, depth) were investigated by white light interferometry and optical microscopy. The experiments reveal that a pulsed laser remelting of AISI D2 leads to a significant hardness drop due to high retained austenite (γR) contents. Contrary, a localized dispersing of TiB2 particles leads to defect free dome- or ring-shaped elevated features with hardness values up to 1800 HV1. The high hardness values result from the dispersed TiB2 particles and an in-situ precipitation of new hard particle phases, which lead to a reduction of the γR content within the matrix. KW - Laser dispersing KW - Laser implantation KW - AISI D2 KW - TiB2 PY - 2019 U6 - https://doi.org/10.1016/j.apsusc.2018.10.179 IS - 467-468 SP - 493 EP - 504 PB - Elsevier B.V. AN - OPUS4-46391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Rethmeier, Michael A1 - Steinhoff, K. T1 - Surface structuring by pulsed laser implantation N2 - Micrometric surface topologies are required for a wide range of technical applications. While lowered surface features have been used for many years to improve the tribological behavior of contacting surfaces, there are also other fields of application, where the potential of elevated surface features is known, e. g. for metal forming tools. However, the demand for a high wear resistance of these structures often inhibits an industrial application. A solution is offered by structuring techniques that use additional material. A promising approach is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This paper describes the potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces by means of microstructural and topological investigations. Afterwards, results of a wear test are given and different applications for this structuring technique are discussed. It can be shown that dome-shaped or ring-shaped structures on a micrometric scale can be produced with high hardness and wear resistance. T2 - THERMEC 2016: 9th International Conference on Processing & Manufacturing of Advanced Materials CY - Graz, Austria DA - 29.05.2016 KW - Surface structuring KW - Metal forming tools KW - Laser implantation KW - Laser dispersing PY - 2017 U6 - https://doi.org/10.4028/www.scientific.net/MSF.879.750 SN - 1662-9752 VL - 879 SP - 750 EP - 755 PB - Trans Tech Publications CY - Schweiz AN - OPUS4-38927 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser dispersing of titanium-di-boride with pulsed fiber laser N2 - In this paper, titanium-di-boride is dispersed on a cold-working tool steel by use of a pulsed fiber laser with high beam quality to produce separated and elevated surface features. The potential to adjust the geometry as well as the mechanical properties of the produced structures in dependence on the process parameters (pulse power, pulse duration) is described by means of metallographic and topographical investigations. It can be ascertained that very hard (hardness > 1000 HV1) surface features of different shape (spots and short lines) can be produced. They are characterized by a fine-grained microstructure resulting from a rapid solidification and finely dispersed TiB2 particles. Finally, the paper proposes different applications for this structuring technique. T2 - ICALEO 2017 - International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 22.10.2017 KW - Laser dispersing KW - Titanium-di-boride KW - Surface structuring KW - Laser implantation PY - 2017 AN - OPUS4-42867 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix A1 - Bachmann, Marcel T1 - Localized laser dispersing of titanium-di-boride with pulsed fiber laser N2 - In this paper, titanium-di-boride is dispersed on a cold-working tool steel by use of a pulsed fiber laser with high beam quality to produce separated and elevated surface features. The potential to adjust the geometry as well as the mechanical properties of the produced structures in dependence on the process parameters (pulse power, pulse duration) is described by means of metallographic and topographical investigations. It can be ascertained that very hard (hardness > 1000 HV1) surface features of different shape (spots and short lines) can be produced. They are characterized by a fine-grained microstructure resulting from a rapid solidification and finely dispersed TiB2 particles. Finally, the paper proposes different applications for this structuring technique. T2 - ICALEO 2017 - International congress on applications of lasers & electro-optics CY - Atlanta, GA, USA DA - 22.10.2017 KW - Laser dispersing KW - Titanium-di-boride KW - Surface structuring KW - Laser implantation PY - 2017 SN - 978-1-940168-1-42 SP - Paper 118, 1 EP - 9 AN - OPUS4-42868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -