TY - CONF A1 - Léonard, Fabien A1 - Hasenfelder, Uta A1 - Krebs, Holger A1 - Bruno, Giovanni T1 - Synchrotron X-ray computed tomography for assessment of shock tube systems N2 - Shock tube systems are non-electric explosive fuses employed in blasting and demolition applications to trigger the detonation of explosive charges. Their working principle is based on the explosive reaction of a fine powder on the tubing´s inner surface, generating a percussive wave travelling at a velocity of 2,100 m/s along the length of the tube, without destroying it. One of the key aspects of the manufacturing process of these shock tubes is the size and morphology of the explosive powder grains and their distribution on the inner wall of the tube, in order to propagate the shockwave efficiently and reliably. For the first time, synchrotron X-ray computed tomography has been used to characterize non-destructively the explosive powder grains, typically Al/HMX between 10 and 20 μm in size, in terms of morphology and 3D distribution but also to characterise the presence and location of defects within the shock tube walls. T2 - 7th Conference on Industrial Computed Tomography CY - Leuven, Belgium DA - 07.02.2017 KW - Explosive KW - Nonel KW - Shock wave KW - Blasting KW - Energetic systems PY - 2017 AN - OPUS4-39168 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -