TY - CONF A1 - Durlo Tambara, Luis Urbano A1 - Dehn, F. A1 - Gluth, Gregor T1 - Effect of alkali-activated concrete composition on carbonation rate under accelerated and natural conditions N2 - While alkali-activated binders offer certain advantages over traditional Portland cement binders, particu¬larly in terms of resistance against chemical attacks and potentially environmental footprint, their degra¬dation mechanisms remain incompletely understood at present, specifically carbonation. Thus, this study investigates the impact of natural and accelerated carbonation (1% and 4% CO2) on three different compositions of alkali-activated concretes: 100% calcined clay (C100) binder, 100% ground blast furnace slag (S100) binder, and a 40% calcined clay and 60% blast furnace slag blend (C40S60). C100 concretes exhibit faster carbonation kinetics, with five times greater natural carbonation depths than S100. This difference diminishes under accelerated carbonation, showing a 1.5 times difference for 1% CO2 and complete carbonation for 4% CO2 at 90 days. The results thus confirm that accelerated carbonation testing of low-Ca alkali-activated concretes yields results that are not representative of natural carbonation. The C40S60 sample demonstrates a carbonation profile similar to a CEM I concrete, i.e., a high carbonation resistance. Microstructure analysis indicates the formation of three polymorphs of calcium carbonate for S100 (calcite, vaterite, and aragonite), with a higher CO2 concentration favouring aragonite over vaterite. C100 exhibits no calcium carbonates; instead, sodium carbonates form, including trona for 4% CO2 and natrite for both accelerated tests. C40S60 shows calcium and sodium carbonates, although to a lesser extent, containing predominantly calcite and minor signals of natrite. Suitable compositions, like C40S60, prove as effective during natural or accelerated carbonation tests as conventional Portland cement concrete. T2 - RILEM Spring Convention 2024 CY - Milan, Italy DA - 10.04.2024 KW - Alkali-activated concrete KW - Carbonation KW - Calcined clay KW - Slag KW - Durability PY - 2024 AN - OPUS4-59915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Su, C. A1 - Shi, J. A1 - Durlo Tambara, Luis Urbano A1 - Yang, Y. A1 - Liu, B. A1 - Revilla-Cuesta, V. T1 - Improving the mechanical properties and durability of steam-cured concrete by incorporating recycled clay bricks aggregates from C&D waste JF - Powder Technology N2 - The output of C&D waste is increasing year by year, among which low-quality recycled brick aggregates (RBAs) have not been well utilized and brought environmental burden. The durability of steam-cured concrete (HCC) is often compromised due to the detrimental effects of this curing regime on the long-term performance and microstructure development of the concrete material. To address this issue, this study investigates the potential of incorporating RBAs to improve the long-term durability of HCC. The results demonstrate that the incorporation of a small amount of RBA (10–20%) not only enhances the 28-d strength of HCC by 2.5–11.3%, but also improves its impermeability by mitigating heat damage effects. The combined application of fine and coarse RBA was found to effectively balance the negative effects of coarse RBA on the performance of HCC. Furthermore, the utilization of RBA in HCC was shown to have economic and environmental benefits. The results of this study demonstrate a simple and effective approach to improve the long-term durability of HCC while promoting the high-value utilization of solid waste. KW - Steam-cured concrete KW - C&D waste KW - Durability KW - Recycled aggregate KW - Environmental benefits PY - 2024 DO - https://doi.org/10.1016/j.powtec.2024.119571 VL - 438 SP - 1 EP - 14 PB - Elsevier B.V. AN - OPUS4-59799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fornacon-Wood, C. A1 - Stühler, M. R. A1 - Gallizioli, C. A1 - Manjunatha, B. R. A1 - Wachtendorf, Volker A1 - Schartel, Bernhard A1 - Plajer, A. J. T1 - Precise construction of weather-sensitive poly(ester-alt-thioesters) from phthalic thioanhydride and oxetane JF - Chemical Communications N2 - We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(esteralt- thioesters) which show improved degradability due to the thioester links in the polymer backbone. KW - Sulfur containing polymers KW - Durability KW - Weathering KW - Synthesis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-590762 DO - https://doi.org/10.1039/d3cc03315e SN - 1364-548X VL - 59 IS - 76 SP - 11353 EP - 11356 PB - RSC AN - OPUS4-59076 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Battig, Alexander A1 - Böhning, Martin A1 - Frasca, Daniele A1 - Schulze, Dietmar A1 - Strommer, Bettina A1 - Tabaka, Weronika A1 - Wachtendorf, Volker T1 - Small but Great – Multifunctional Graphene in Rubber Nanocomposites N2 - A few layer/multilayer graphene (MLG) with a specific surface area of BET ≥ 250 m2/g is proposed as an efficient multifunctional nanofiller for rubbers. The preparation method, i.e., ultrasonically-assisted solution or latex premixing of master batches followed by conventional two-roll milling, strongly influences the dispersion in the elastomeric matrix and is fundamental for the final properties. When homogenously dispersed, single stacks of only approximately 10 graphene sheets, with an aspect ratio of ca. 35, work at low loadings, enabling the replacement of large amounts of carbon black (CB), an increase in efficiency, and a reduction in filler load. The appropriate preparation yielded nanocomposites in which just 3 phr are sufficient to significantly improve the rheological, curing, gas barrier properties, electrical and thermal conductivity, as well as mechanical properties of different rubbers, as shown for chlorine-Isobutylene-Isoprene rubber (CIIR), nitrile-butadiene rubber (NBR), natural rubber (NR), and styrene-butadiene rubber (SBR).[1-5] 3 phr of MLG tripled the Young’s modulus of CIIR, an effect equivalent to 20 phr of CB. The stronger interactions between MLG and NR or SBR also resulted in a reduction in the elongation at break by 20% and 50%, respectively, while the same parameter was hardly changed for CIIR/MLG and NBR/MLG. CIIR/MLG and NBR/MLG were stiffer but just as defomable than CIIR and NBR. The strong reinforcing effect of 3 phr MLG was confirmed by the increase of greater than 10 Shore A in hardness. MLG reduces gas permeability, increases thermal and electrical conductivities, and retards flammability. We investigated MLG also as a synergist for reducing the aluminium trihydrate loading in flame retardant hydrogenated acrylonitrile-butadiene (HNBR), polybutadiene chloroprene (BR/CR), and chlorosulfonated polyethylene rubber(CSM).[6-8] The higher the nanofiller concentration is, the greater the improvement in the properties. For instance, the permeability decreased by 30% at 3 phr of MLG, 50% at 5 phr and 60% at 10 phr, respectively. Moreover, the MLG nanocomposites improve stability of mechanical properties against the effects of weathering. In key experiments an increase in UV-absorption and a pronounced radical scavenging were proved as stabilizing mechanisms. In a nutshell, MLG is an efficient multifunctional nanofiller ready to be used for innovative rubber development. T2 - 34th PDDG Conference CY - Dubrovnik, Croatia DA - 11.06.2023 KW - Graphene KW - Nanocomposites KW - Reinforcement KW - Antioxydant KW - Flame retardant KW - Durability PY - 2023 AN - OPUS4-57693 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Voigt, Marieke A1 - Gardei, Andre A1 - Meng, Birgit ED - di Prisco, M. ED - Meda, A. ED - Balazs, G.L. T1 - The adaption of the set-up for gas permeability measurements for ultra-high performance concrete T2 - Proceedings of the 14th fib PhD symposium in Civil Engineering N2 - In the framework of this project, a steam pressure vessel was to be developed from ultra-high perfor-mance concrete (UHPC) to withstand process temperatures of 200 °C and the respective steam pressure of 15,5 bar. To guarantee the long-term water vapour tightness of the system, the permeability of two UHPC mixtures were tested after long-term cyclic autoclaving. As UPHC shows a high density and therefore low permeability, measurements after the RILEM-Recommendation (TC 116-PCD) reached their detection limit. Therefore, the measurement set-up was adapted to measure the permeability of highly dense UHPC more reliably and quickly. This adaption includes measurements in a higher pres-sure range, the change of sample size thickness and the usage of Ar as a medium compared with the RILEM Recommendation. Additionally, the system was equipped with two pressure sensors and Ar-flowmeters to guarantee a continuous record of the experimental parameters. The new system was tested and evaluated by comparing measurements with the RILEM recommended system. Preliminary results show that the adapted system is capable to provide efficient and reliable results of concrete with low permeability. T2 - 14th fib PhD Symposium in Civil Engineering CY - Rom, Italy DA - 05.09.2022 KW - Durability KW - UHPC KW - gas permeability PY - 2022 SN - 978-2-940643-17-2 SN - 2617-4820 VL - 58 SP - 353 EP - 359 AN - OPUS4-56862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Lin, Xuebao A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Schoch, R. A1 - Lang, M. A1 - Tröppner, O. A1 - Bosse, M. T1 - Weathering Resistance of Halogen-free Flame Retardancy in E&E Plastics N2 - - Durability of fire retardancy - Impact of different exposure conditions - Degradation with respect to different fire properties/tests T2 - Fire Resistance in Plastics CY - Cologne, Germany DA - 28.11.2022 KW - Durability KW - Flame retardant KW - Thermoplastic Polyurethane KW - Cable KW - EVA KW - Weathering PY - 2022 AN - OPUS4-56444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Werder, Julia A1 - Simon, Sebastian A1 - Gardei, André A1 - Fontana, P. A1 - Meng, Birgit T1 - Thermal and hydrothermal treatment of UHPC: influence of the process parameters on the phase composition of ultra-high performance concrete JF - Materials and Structures N2 - Several studies show that thermal and hydrothermal treatment can further improve the excellent properties of UHPC in terms of mechanical strength and durability. While for the thermal treatment the increase in strength is attributed to an intensified pozzolanic and hydraulic reaction, for the hydrothermal treatment previous studies accredited it mostly to the formation of tobermorite. In the presented study thermal and hydrothermal treatment of UHPC samples was systematically varied and the phase formation analysed related to the strength development of a reference sample cured for 28 days in water. For the thermal treatment the results show that the strength increase depends on the protection against desiccation and can be ascribed to an improved pozzolanic reaction of the siliceous fillers. To achieve a significant enhancement of strength, a pre-storage time of few days and a long dwell time at elevated temperature/pressure are required. For the hydrothermal treatment already heating the specimens up to 185 °C in saturated steam followed by an immediate cooling leads to a substantial increase in compressive strength. Pre-storage time did not affect the result as far as a minimum of several hours is guaranteed. The improved performance is due to an increase in the pozzolanic and hydraulic reaction. Surprisingly, tobermorite was only found within a very thin layer at the surface of the sample, but not in the bulk. Sulphate and aluminium stemming from the decomposition of the ettringite are bound in the newly formed phases hydroxylellestadite and hydrogarnet. KW - UHPC KW - Thermal treatment KW - Hydrothermal treatment KW - Compressive strength KW - Phase development KW - Durability KW - Tobermorite KW - Hydroxylellestadite KW - Hydrogarnet PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-523402 DO - https://doi.org/10.1617/s11527-021-01633-w SN - 1871-6873 SN - 1359-5997 VL - 54 IS - 1 SP - Article 44 PB - Springer Nature AN - OPUS4-52340 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schartel, Bernhard A1 - Lin, Xuebao A1 - Tan, Yi A1 - Wachtendorf, Volker A1 - Klack, Patrick A1 - Schoch, R. A1 - Lang, M. A1 - Tröppner, O. A1 - Bosse, M. T1 - Weathering resistance of halogen-free flame retardancy in thermoplastics N2 - Weathering resistance of halogen-free flame retardancy in thermoplastics - Durability of fire retardancy - Impact of different exposure condition - Degradation with respect to different fire tests T2 - 17th SKZ Conference on Trends in Fire Safety and Innovative Flame Retardants for Plastics CY - Online Meeting DA - 18.05.2021 KW - Durability KW - Flame retardant KW - Aluminum hydroxide (ATH) KW - Weathering KW - Cable KW - TPU KW - EVA KW - Polyamide 6.6 KW - Aluminium diethylphosphinate PY - 2021 AN - OPUS4-52680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Schoch, R. A1 - Schartel, Bernhard A1 - Wachtendorf, Volker A1 - Tan, Yi A1 - Lin, Xuebao A1 - Tröppner, O. A1 - Lang, M. A1 - Hochrein, T. A1 - Bastian, M. T1 - Langzeit- und Witterungsstabilität von halogenfreiem Flammschutz in Polymeren N2 - Die Forderung, dass der Flammschutz von Kunststoffen nicht nur zum bei der Herstellung der jeweiligen Produkte, sondern auch über die gesamte Einsatzdauer im geforderten Maß wirksam ist, stellt eine große Aufgabe dar. Ferner ist die Anforderung für viele Produkte in der Praxis neu, da bisher vor allem der Einfluss der Flammschutzmittel auf die Stabilität der Polymerwerkstoffe, nicht aber die Stabilität des Flammschutzes untersucht wurde. Das Langzeitverhalten halogenfreier Systeme ist bis heute wenig untersucht, insbesondere weil Phosphor- und Stickstoff-basierte Systeme die oxidative Beständigkeit von Polymeren weniger zu beeinflussen scheinen als halogenhaltige FSM. Die Frage, wie zuverlässig der Flammschutz wirkt, wenn Kunststoffe einige Jahre im Innen- und Außenbereich im Einsatz sind und dabei wechselnden Beanspruchungen ausgesetzt waren, wurde bislang nur vereinzelt untersucht. Mögliche Auswirkungen von Witterungseinflüssen auf flammgeschützte Polymerwerkstoffe sind, dass die Flammschutzmittel selbst abbauen, ausgewaschen werden, oder auch durch Wechselwirkung mit den eingesetzten Additiven oder mit den Alterungsprodukten der Polymermatrix in ihrer Wirkung nachlassen. Hier bestand großer Forschungsbedarf, um an den Punkt zu gelangen, die Beständigkeit der Flammschutzeigenschaften eines Produktes über seine gesamte Lebensdauer zuverlässig garantieren zu können. Diese Fragestellung greift das durchgeführte Forschungsvorhaben auf. Ziel war die Untersuchung der Langzeitstabilität der Flammschutzwirkung von halogenfrei flammgeschützten Polymerwerkstoffen unter diversen Witterungseinflüssen. Dazu wurden die Schädigungsmechanismen der Polymerwerkstoffe und der Flammschutzmittel sowie die auftretenden Wechselwirkungen analysiert, um ein Verständnis für die ablaufenden Prozesse zu entwickeln und Empfehlung für die Reduzierung der Alterung zu erarbeiten. Gegenstand der Untersuchungen waren anwendungsrelevante Flammschutz-Konzepte, die miteinander verglichen wurden. Die Erarbeitung von Struktur-Eigenschafts-Beziehungen ermöglichte die Beschreibung der Empfindlichkeiten und den Vergleich zwischen den Systemen. Darauf basierend wurden für die FSM spezifische Leitlinien für die Optimierung der Langzeitstabilität des Flammschutzes erstellt. N2 - The requirement that the flame retardancy of plastics is still effective to the required degree not only at the time of manufacture of the respective products, but also over the entire period of use, is a major challenge in view of the very long periods of time involved. In addition, the requirement is new for many products in practice, as up to now the influence of flame retardants on the stability of the polymer materials has been investigated, but not the stability of the flame retardant itself. The long-term behaviour of halogen-free systems has been little studied to date, especially because phosphorus- and nitrogen-based systems seem to have a much smaller influence on the oxidative stability of polymers than halogene containing flame retardants. The question of how reliable flame retardancy is when plastic products have been in use for several years indoors and outdoors and have been exposed to a wide range of climatic stresses has only been investigated in isolated cases. Possible effects of weathering on flame-retarded polymer materials are that the flame retardants themselves degrade, migrate or are washed out, or that their effect diminishes through interaction with other additives used or with the ageing products of the polymer matrix. At this point, there was a great need for research in order to reach the point where the stability of the flame retardant properties of a product can be reliably guaranteed over its entire service life. This question is taken up by the research project carried out. The aim of the research project was the systematic investigation of the long-term stability of the flame-retardant effect of halogen-free flame-retardant polymer materials under various weather conditions. For this purpose, the predominant damage mechanisms of the polymers and the flame retardants as well as the interactions occurring were analysed in order to develop an understanding of the processes taking place and to work out recommendations for reducing ageing. Subject of the investigations were different applicationrelevant flame retardant concepts, which were compared with each other. The development of structure-property relationships enabled the description of the specific sensitivities and the comparison between the different systems. Based on this, specific guidelines for the optimisation of the long-term stability of the flame retardants were developed for the different flame retardants. KW - Durability KW - Flame retardant KW - Flammschutz KW - Weathering KW - Ethylene-vinyl acetate KW - Cables KW - Polyamid KW - Langzeitstabilität PY - 2021 SN - 978-3-8440-7781-0 SN - 2364-754X SP - 1 EP - 222 PB - Shaker CY - Düren AN - OPUS4-54274 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Buchheim, Janine A1 - Recknagel, Christoph A1 - Wolter, Patrick A1 - Kittler-Packmor, Kai T1 - A new approach towards scientific evaluation and performance-related design of bituminous joint sealing materials and constructions T2 - Proceedings of the RILEM International Symposium on Bituminous Materials - ISBM Lyon 2020 N2 - While there is a permanent improvement of concrete pavement mixtures and pavement construction types over the last decades, the state-of-the-art joint sealing materials and joint constructions seem to stagnate on an antiquated empirical level. This status has been reaffirmed in the latest European standard. The consequences in the motorway network due to unsatisfying capability and durabilty of joint sealing systems are unacceptable. In addition, inadequate traffic performance (noise emissions, roll-over comfort) and traffic safety losses in the joint area of concrete pavements are existing challenges. These deficits and weaknesses reflect a demand for joint sealing materials and constructions whose approval requirements take functional aspects into account. Furthermore a sufficient analysis of decisive loads and a practice-oriented method to evaluate the requirements towards performance and durability is still missed. In this contribution decisive loads to German highways are analyzed. The design of test specimen for representative functional testing of joint sealing systems is discussed. The focus is on the geometry of the test specimens and the used concrete mixture. Finally, a new approach for a function-orientated test concept that considers representative load functions is presented. The potential of this approach to validate the durability and capability of various joint sealing systems is also presented using an example. T2 - RILEM International Symposium on Bituminous Materials CY - Online meeting DA - 08.06.2020 KW - Joint sealing KW - Expansion joint KW - Performance testing KW - Capability KW - Durability PY - 2020 SN - 978-3-030-46454-7 VL - 27 SP - 1 EP - 6 PB - Springer Nature AN - OPUS4-53488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -