TY - CONF A1 - Erning, Johann Wilhelm A1 - Burkert, Annette A1 - Bohlmann, Tatjana T1 - Corrosion Problems with 1.4521 steel pipes in drinking water N2 - In several cases crevice corrosion with 1.4521 stainless steel pipes was observed. The presentation shows the investigations that lead to the solution of the failure cases T2 - Eurocorr 2020 CY - Online meeting DA - 07.09.2020 KW - Crevice corrosion KW - Drinking water KW - Stainless steel KW - Failure analysis PY - 2020 AN - OPUS4-51235 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Erning, Johann Wilhelm A1 - Kamaraj, A. T1 - Susceptibility of 304 Stainless Steel to Crevice Corrosion in Electrochemically Active Fluids N2 - The susceptibility of Type 304 stainless steel (SS) to crevice corrosion upon contacting with electrochemically active fluids was investigated using exposure tests and stepwise potentiostatic polarization. Crevice materials made of 304 SS and polyether ether ketone (PEEK) were focused on in this study. The combined influence of oxidant and chloride concentration on crevice corrosion was examined in detail in the two types of crevice combinations (304 SS-to-PEEK and 304 SS-to-304 SS). The 304 SS specimens were strongly susceptible to crevice corrosion when coupled with 304 SS. Even at a low concentration of 5 mg/L free chlorine and 150 mg/L chloride, which is below nominal dilutions in beverage industries, the examined specimens underwent crevice corrosion in both crevices. The effect of water composition on crevice corrosion was also studied, indicating high susceptibility of 304 SS to crevice corrosion in low pH (pH ≤ 5) solutions. The corroded surface morphology was analyzed using scanning electron microscope, energy dispersive x-ray, and confocal. KW - Crevice corrosion KW - Disinfectants KW - Stainless steel PY - 2020 U6 - https://doi.org/10.5006/3324 SN - 0010-9312 VL - 76 IS - 4 SP - 424 EP - 435 PB - Nace International CY - Houston AN - OPUS4-50652 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Crevice corrosion of 304 stainless steel under the influence of chlorine and chloride N2 - Der Einfluss von elektrolytisch erzeugten Desinfektionsmitteln auf die Spaltkorrosion des nichtrostenden Stahls 1.4301 wird dargestellt. Der Einfluss der Chlor- und Chloridkonzentration wird ermittelt N2 - The influence of electrolytically produced disinfectants on crevice corrosion of 304 stainless steel is shown. The influence of chlorine and chloride concentrations is determined. T2 - Kormat 2020 CY - Online meeting DA - 26.11.2020 KW - Crevice corrosion KW - Werkstoffe KW - Stainless steel KW - Disinfection PY - 2020 AN - OPUS4-51698 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The crevice corrosion behaviour of stainless steel 304 L n ECA fluids is investigated. Results are described, rules for operation are suggested T2 - Ceocor-Tagung 2019 CY - Copenhagen, Denmark DA - 21.05.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49280 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kamaraj, Abinaya A1 - Erning, Johann Wilhelm A1 - Reimann, S. A1 - Ahrens, A. T1 - Susceptibility of 304 stainless steel to crevice corrosion in electrochemically active fluids N2 - The susceptibility of AISI 304 stainless steel to crevice corrosion on the effect of contact with electrochemically active fluids was investigated using exposure and stepwise potentiostatic polarisation. Crevice materials made up of 304 SS and Polyether ether ketone (PEEK) forming two kinds of crevices including 304 SS-to-PEEK and 304 SS-to-304 SS were tested. T2 - Corrosion 2019 NACE CY - Nashville, TN, USA DA - 24.03.2019 KW - Desinfection KW - Crevice corrosion KW - ECA PY - 2019 AN - OPUS4-49284 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N. A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of co 2 injection pipe steels: role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Cement KW - Carbon capture KW - Corrosion and storage (CCUS) technology KW - Utilization KW - Carbon steel KW - Crevice corrosion PY - 2019 SP - Paper 200597, 1 EP - 4 PB - SOCIEMAT CY - Madrid, Spain AN - OPUS4-49109 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Le, Quynh Hoa A1 - Bäßler, Ralph A1 - Schiller, B.N A1 - Beck, M. A1 - Bettge, Dirk T1 - On the corrosion behaviour of CO2 injection pipe steels: Role of cement N2 - Carbon Capture and Storage (CCS) is identified as an excellent technology to reach the target of CO2 reduction. However, the safety issue and cost-effectiveness hinder the future of CCS. For the reliability and safety issues of injection wells, the corrosion resistance of the materials used needs to be determined. In this study, representative low-cost materials including carbon steel 1.8977 and low alloyed steel 1.7225 were investigated in simulated pore water at 333 K and under CO2 saturation condition to represent the worst-case scenario: CO2 diffusion and aquifer fluid penetration. These simulated pore waters were made from relevant cement powder to mimic the realistic casing-cement interface. Electrochemical studies were carried out using the pore water made of cement powder dissolved in water in comparison with those dissolved in synthetic aquifer fluid, to reveal the effect of cement as well as formation water on the steel performance. Two commercially available types of cement were investigated: Dyckerhoff Variodur® and Wollastonite. Variodur® is a cement containing high performance binder with ultra-fine blast furnace slag which can be used to produce high acid resistance concrete. On the other hand, Wollastonite is an emerging natural material mainly made of CaSiO3 which can be hardened by converting to CaCO3 during CO2 injection. The results showed the pH-reducing effect of CO2 on the simulated pore water/aquifer (from more than 10 to less than 5) leading to the active corrosion process that happened on both 1.8977 and 1.7225. Electrochemical characterization showed negative free corrosion potential and polarisation curves without passive behaviors. The tested coupons suffered from pitting corrosion, which was confirmed by surface analysis. Interestingly, basing on the pit depth measurements from the tested coupons and the hardness of cement powder, it is suggested that Variodur® performed better than Wollastonite in both aspects. The electrochemical data was compared to that resulted from exposure tests to give a recommendation on material selection for bore-hole construction. T2 - EUROCORR 2019 CY - Sevilla, Spain DA - 09.09.2019 KW - Carbon capture KW - Utilization, and storage (CCUS) technology KW - Corrosion KW - Carbon steel KW - Mortel KW - Crevice corrosion PY - 2019 AN - OPUS4-49105 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaja T1 - Influence of electrochemically active fluids on the corrosion risk of stainless steel N2 - The influence of electrochemically produced disinfectants on the corrosion behaviour of stainless steel is discussed. Special attention is given to crevice corrosion. T2 - Eurocorr 2018 CY - Krakau, Poland DA - 10.09.2018 KW - Crevice corrosion KW - Stainless steel KW - Disinfection PY - 2018 AN - OPUS4-46125 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Erning, Johann Wilhelm A1 - Kamaraj, Abinaya T1 - Influence of electrochemically active fluids on the corrosion risk of stainless steel N2 - The influence of electrochemically produced disinfectants on the corrosion behaviour of stainless steel is investigated. Special attention is given to crevice corrosion. T2 - Eurocorr 2018 CY - Krakau, Poland DA - 10.09.2018 KW - Disinfection KW - Crevice corrosion KW - Stainless steel PY - 2018 SP - 1 EP - 5 AN - OPUS4-46126 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Sobetzki, Joana A1 - Le Manchet, S. A1 - Bäßler, Ralph T1 - Corrosion Resistance of the Super-Austenitic Stainless Steel UNS S31266 for Geothermal Applications N2 - Super-austenitic stainless steels cover grades with high chromium (20 to 27 %), high nickel (18 to 31 %) and high molybdenum (4 to 6 %) contents. Within this family, the 6%Mo high nitrogen grade S31266 was developed to combine the beneficial influence of chromium, tungsten, molybdenum and nitrogen on its mechanical and corrosion properties. Due to 22 % nickel, 24 % chromium and 0.4 % nitrogen additions, this alloy exhibits a very stable microstructure, being less prone to intermetallic phase precipitation than the other highly alloyed super-austenitic stainless steels. This paper deals with the corrosion resistance of S31266 in artificial geothermal water with moderate salinity and low pH. Long-term static exposures and electrochemical tests were conducted at various temperatures to evaluate the pitting, crevice and stress corrosion cracking resistance of this material. The results show that S31266 is resistant up to 220 °C. As a consequence, it can be a good candidate material for geothermal applications involving a highly corrosive environment, especially salinity and low pH. T2 - NACE International Corrosion Conference 2107 CY - New Orleans LA, USA DA - 26.03.2017 KW - Geothermal energy KW - S31266 KW - Crevice corrosion KW - Super-austenitic stainless steel PY - 2017 SP - Paper 8825, 1 EP - 11 PB - NACE CY - Houston TX, USA AN - OPUS4-39830 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -