TY - CONF A1 - Hoffmann, Katrin A1 - Tschiche, Harald Rune A1 - Resch-Genger, Ute T1 - Fluorescence microscopic and spectroscopic monitoring of degradation processes upon polymer ageing N2 - The majority of all routinely used methods to assess polymer aging are based on destructive tests and methods. Early indicators for the deterioration of polymer materials are e.g., physical or mechanical properties like tensile strength, adhesion, brittleness, and color. It is well-known, however, that predominantly chemical changes are the underlying process of the physical changes that occur in organic materials upon aging over time. Typical initial steps during polymer degradation are crosslinking or chain breaking, alteration of autofluorescence, “yellowing” or bleaching caused by the formation of new functional groups. A straightforward strategy towards the sensitive detection and monitoring of chemical changes in the course of polymer aging is based on non-destructive optical measurements. Luminescence techniques, one of the most sensitive spectroscopic methods are the method of choice. Here, we present first results of luminescence-based monitoring of polymer degradation induced by different environmentally relevant weathering factors (e.g. humidity and UV exposure). Our studies include fluorescence spectroscopy as well as spectral scanning confocal fluorescence microscopy and clearly demonstrate the possibility to follow accelerate-aging processes by luminescence detection. T2 - Focus on Microscopy 2017 CY - Bordeaux, France DA - 09.04.2017 KW - Polymer aging KW - Confocal fluorescence microscopy KW - Fluorescence spectroscopy KW - Surface functionalities PY - 2017 AN - OPUS4-40274 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -