TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz T1 - Trash to treasure: recovery of transition metal phosphates for (electro-)catalytical applications N2 - Wastewaters containing high concentrations of NH4+, PO43- and transition metals are environmentally harmful and toxic pollutants. At the same time phosphorous and transition metals constitute valuable resources. Here, we report the synthesis routes for Co- and Ni-struvites (NH4MPO4∙6H2O, M = Ni2+, Co2+) out of aqueous solutions resembling synthetic/industrial waste water compositions, and allowing for P, ammonia and metal co-precipitation. Furthermore, the as-obtained struvites were further up-cycled. When heated, these transition metal phosphates (TMPs) demonstrate significant changes in the degree of crystallinity/coordination environment involving a high amount of amorphous phases and importantly develop mesoporosity (Figure 1). In this regard, amorphous and mesoporous TMPs are known to be highly promising (electro-)catalysts. Amorphous phases do not represent a simple “disordered” crystal but more a complex system with a broad range of compositions and physicochemical properties, which remain mostly unknown. Consequently, we investigated the recrystallization and amorphization process during thermal treatment and a resolved the complex amorphous/crystalline structures (Figure 2). As a proof-of-principle for their applicational use, the as-obtained TMPs demonstrate significant proton conductivity properties similar to apatite-like structures from room to high temperatures (>800°C). Hence, we have developed a promising recycling route in which environmental harmful contaminants like PO43-, NH4+ and 3d metals would be extracted out of waste waters in the form of precursor raw materials. These raw materials can be then further up-cycled through a simple thermal treatment for their specific application in electrocatalysis. T2 - Goldschmidt Conference 2022 CY - Hawai'i, USA DA - 10.07.2022 KW - Mesoporosity KW - Amorphous phases KW - Transition metals KW - Struvite KW - Phosphates PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-552852 UR - https://conf.goldschmidt.info/goldschmidt/2022/meetingapp.cgi/Paper/9501 AN - OPUS4-55285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Karafiludis, Stephanos A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materialsls N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - SNI 2022 - German Conference for Research with Synchrotron Radiation, Neutrons and Ion Beams at Large Facilities CY - Berlin, Germany DA - 05.07.2022 KW - Struvite KW - Transition metal KW - Phosphate KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55911 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stawski, Tomasz A1 - de Oliveira Guilherme Buzanich, Ana A1 - Emmerling, Franziska T1 - Evolution of mesoporous frameworks from precipitated struvite-structured metal phosphate materials N2 - Mesoporous transition metal phosphates (TMPs) have attracted major interest due to their high (electro-)catalytic activity suitable for H2 generation, supercapacitors or batteries. Typically, mesoporous materials are synthesized via a template-based route. This way is in the case of TMP because the surfactants used are difficult to remove due to the sensitivity of the mesoporous framework. We present a template-free method including the formation of a precursor phase called M-struvite (NH4MPO4•6H2O, M = Mg2+, Ni2+, Co2+, Ni2+xCo2+1-x) to synthesize mesoporous and amorphous metal phosphates. This method relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneous mesoporous phase associated with the degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the coordination metal coordination environment was followed with diffraction and spectroscopy based in-situ and ex-situ methods. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions between the chemical systems. In a complex amorphous structure, thermal decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes for phosphate materials with a spherical to channel-like pore geometry (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). In addition to this low-cost, environmentally friendly and simple synthesis, M-struvites could grow as a recycling product from industrial and agricultural wastewaters. These waste products could be upcycled through a simple thermal treatment for further applications. T2 - ECCG7, European Conference on Crystal Growth CY - Paris, France DA - 25.07.2022 KW - Transition metals KW - Phosphates KW - Struvite KW - Amorphous phases KW - Mesoporosity PY - 2022 AN - OPUS4-55491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -