TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas T1 - Confinement induced relaxations and phase behavior of a nanoconfined ionic liquid crystal N2 - Liquid crystalline mesophases in nanoconfinement exhibit intriguing phase transition behaviors and relaxation dynamics. Here in, we investigate the molecular dynamics and electrical conductivity of a linear shaped guanidinium based ILC confined in self-ordered nano porous alumina oxide membranes of pore size ranging from 180nm down to 25nm by employing broadband dielectric spectroscopy (BDS) and calorimetry. Calorimetric investigation reveals a complete suppression of the columnar – isotropic transition, while the plastic crystalline – columnar transition temperature decreases with inverse pore size and deviates from the Gibbs – Thomson equation. For the bulk case, BDS detects two relaxation modes in the crystalline phase, the  relaxation and the α1 relaxation, and two relaxation modes in the columnar phase, the α2 and α3 relaxation. For the confined case, all relaxation modes slow down compared to the bulk. However, for the least pore size (25 nm), the α2 relaxation is absent. We discuss the possible molecular origins of the different relaxation modes observed. For the bulk ILC, a clear jump of 4 orders of magnitude in the absolute values of DC conductivity occurs at the transition from the plastic crystalline to hexagonal columnar phase, for the confined ILC, this transition is smooth. DC conductivity is reduced for the confined case, except for the 25nm, where the values is similar to the bulk. T2 - 11th IDS conference 2022 CY - San Sebastian, Spain DA - 03.09.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-55879 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolmangadi, Mohamed Aejaz A1 - Schönhals, Andreas A1 - ZhuoQing, L. A1 - Huber, P. A1 - Laschat, S. T1 - Dynamics and conductivity of nanoconfined amino acid based superdiscs: Influence of the side chain length N2 - Ionic Liquid Crystals (ILCs) are emerging class of materials that combine the properties of liquid crystals with the ionic conduction similar to ionic liquids. It’s known that liquid crystals exhibit intriguing properties when confined and are of importance from both fundamental and technological perspective. Here, we study the molecular dynamics and electrical conductivity of a homologous series of Dopamine (DOPA) based ILCs, ILCn (n = 12,14,16) confined in self ordered nanoporous alumina oxide membrane of 180 nm pore size using Broadband Dielectric Spectroscopy (BDS). We aim to understand how the alkyl chain length and confinement influence the dynamics in this system. In the bulk, for all ILCs, we observe two relaxation modes in the crystalline phase, the  and α1 relaxation respectively, and one relaxation mode in the columnar phase, the α2 relaxation, but for ILC16, where two relaxation modes (α2 and α3) are detected in the columnar phase. For the confined case, all relaxation processes slowdown compared to the bulk. For ILC16, the α1 relaxation is completely suppressed. For all ILCs, the absolute values of DC conductivity are reduced by some three orders of magnitude. We discuss in detail the possible molecular origin of the relaxation processes and the charge transport in this system. T2 - CONFIT 2022 CY - Grenoble, France DA - 10.10.2022 KW - Ionic Liquid crystals KW - Nanoconfinement KW - Conductivity PY - 2022 AN - OPUS4-57341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -