TY - CONF A1 - Frenzel, Florian A1 - Würth, Christian A1 - Muhr, V. A1 - Hirsch, T. A1 - Resch-Genger, Ute T1 - Power dependent optical properties of hexagonal β-NaYF4: x % Er3+, 20 % Yb3+ core/ core-shell upconversion nanoparticles in cyclohexane and water N2 - Lanthanide doped photon upconverting nanophosphors (UCNPs) have the unique capability to produce narrow band, multi-color emission in the UV/vis/NIR upon multiphotonic absorption of infrared light, which makes them promising reporters for diagnostic, bioanalytical, and biological applications. This minimizes background signals, which normally occur due to autofluorescence from auxochromes, in biological matrices and enables deep penetration depths in biological applications. Moreover, UCNPs show long luminescence lifetimes in the μs range favorable for time gated emission in conjunction with a high photostability and chemical inertness and they do not blink. One of the most efficient upconversion (UC) phosphors for conversion of 976 nm to 655 nm and 545 nm light presents the hexagonal NaYF4-host crystal doped with 20 % Yb3+ used as sensitizer to absorb infrared light and 2 % Er3+ acting as activator mainly responsible for light emission. The high transparency in the relevant spectral windows of this host together with its low phonon frequencies ensure relatively high luminescence efficiencies. Although UCNPs are ideal candidates for many chemical and biological sensing and imaging applications, compared to other well-known chromophores like organic dyes or QDs, they suffer from a comparatively low brightness due to the low absorption cross sections of the parity forbidden f-f-transitions and low photoluminescence quantum yields (QYUC) particularly in the case of small nanoparticles with sizes of < 50 nm. The rational design of more efficient UCNPs requires an improved understanding of the nonradiative decay pathways in these materials that are influenced by particle architecture including dopant ion concentration and homogeneity of dopant distribution within UCNPs, size/surface-to-volume ratio, surface chemistry, and microenvironment. A promising approach to overcome the low efficiency of UCNPs is to use plasmonic interactions between a noble metal (Ag or Au) structure in the proximity of UCNPs and the incident light. This interaction leads to a modification of the spectroscopic properties due to local field enhancements and can involve an increase of the photoluminescence. In this respect, we study the interactions of UCNPs with metal structures (clusters and shells) by varying shape and size. Here, first results derived from integrating sphere spectroscopy and time-resolved fluorescence measurements are presented. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Upconversion KW - Nanoparticle KW - Flourescence KW - Core-shell architecture KW - NIR KW - Absolute flourometry KW - Integrating sphere spectroscopy KW - Er(III) KW - Yb(III) KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41172 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dhamo, Lorena A1 - Würth, Christian A1 - Raevskaya, A. E. A1 - Stroyuk, O. L. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Resch-Genger, Ute T1 - Syntheses and characterization of 2-4nm AgInS2/ZnS quantum dots N2 - Ternary semiconductors Quantum Dots (t-QDs) like AgInS (AIS) QDs are interesting alternatives to Cd-based QDs for applications as optical active materials in light-emitting diodes (LEDs), solar concentrators and solar cells as well as as biodiagnostic tools, respectively. AIS QDs exhibit broad photoluminescence (PL) spectra in the visible and near infrared, which are tunable by size and chemical composition (ratio of components or doping). In order to enhance the PL quantum yield (PL QY or Fpl) and prevent material deterioration and oxidation, these QDs are covered by ZnS shell. Here we show a spectroscopic study of differently colored AIS QDs synthesized in water, evaluating their PL properties, their PL QY and their PL decay. The simple aqueous synthesis that avoids further ligand exchange steps for bioanalytical applications, the tunable emission color, the high PL QY, the high absorption coefficients and the long lifetime make these t-QDs promising Cd-free materials as biodiagnostic tools or optical active materials. T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - Synthesis KW - Spectral multiplexing KW - Ternary quantum dot PY - 2017 AN - OPUS4-41173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weigert, Florian A1 - Guhrenz, C. A1 - Strelow, C. A1 - Gaponik, N. A1 - Eychmüller, A. A1 - Mews, A. A1 - Resch-Genger, Ute T1 - Probing the bright and dark fraction of core-shell CdSe nanocrystals with single particle spectroscopy N2 - "The optical properties of semiconductor nanocrystals (SCNC) are controlled by constituent material, particle size, and surface chemistry, specifically the number of dangling bonds favoring nonradiative deactivation. This can lead to a distribution of photoluminescence Quantum yields (PL QY) amongst the SCNC particles, i.e., mixtures of “bright” and “grey” or “dark” SCNCs. Particularly the number of absorbing, yet not emitting particles can have a significant effect on the PL quantum yield obtained in ensemble measurements, leading to ist underestimation. The “dark fraction” is not assessable in common ensemble measurements; it can be probed only on a single particle level using a confocal laser scanning microscope coupled with an AFM. Such a setup was used to study core‐shell CdSe SCNCs with different shells and surface chemistries. Special emphasis was dedicated to correlate brightness, blinking, dark fraction, and decay kinetics of the single SCNCs with the ensemble PL QY and the PL decay kinetics. The results of this study can help to identify new synthetic routes and surface modifications to colloidally and photochemically stable SCNCs with a PL QY of close to unity." T2 - Summer School "EXCITING NANOSTRUCTURES" CY - Bad Honnef, Germany DA - 17.07.2017 KW - Semiconductor KW - Nanoparticle KW - Quantum dot KW - Flourescence KW - CdSe KW - Shell KW - Surface chemistry KW - Single particle spectroscopy PY - 2017 AN - OPUS4-41192 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -