TY - CONF A1 - Werner, Tiago A1 - Madia, M. A1 - Hilgenberg, K. A1 - Gärtner, F. A1 - Klassen, T. T1 - Structural Integrity of Cold Spray Repaired aerospace components N2 - Components in aircrafts are usually replaced when critical defects are present. An alternative approach is repairing using gas dynamic cold spraying: metal particles are shot at a surface at supersonic speeds to selectively rebuild damaged material. Compared to other material-deposition techniques, its advantage is the small thermal impact on the component, preserving its mechanical properties. Component-repair can save considerable amounts of energy and resources. However, its industrial application at large scale needs reproducible, good repair-material properties to guarantee a safe component life. The aim of this project is the development of safe, automatized repair-procedures considering the mechanical fatigue properties of the repair. T2 - ICEAF VII Conference 2023 CY - Spetses, Greece DA - 21.06.2023 KW - Cold Spray KW - Repair KW - Fatigue KW - Fatigue Crack Growth KW - Slow Strain Rate Testing PY - 2023 AN - OPUS4-57784 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Werner, Tiago A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Sonnenburg, Elke T1 - Comparison of the fatigue behavior of wrought and additively manufactured AISI 316L N2 - Additively Manufactured (AM) parts are still far from being used in safety-relevant applications, mainly due to a lack of understanding of the feedstock-process-propertiesperformance relationship. This work aims at providing a characterization of the fatigue behavior of the additively manufactured AISI 316L austenitic stainless steel and a direct comparison with the fatigue performance of the wrought steel. A set of specimens has been produced by laser powder bed fusion (L-PBF) and a second set of specimens has been machined out of hot-rolled plates. The L-PBF material shows a higher fatigue limit and better finite life performance compared to the wrought material, accompanied by an extensive amount of cyclic softening. T2 - Fatigue Design 2021 CY - Online meeting DA - 17.11.2021 KW - Additive Manufacturing KW - AM KW - 316L KW - Fatigue KW - High Cycle Fatigue KW - Low Cycle Fatigue PY - 2021 AN - OPUS4-53780 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Trappe, Volker A1 - Kraus, David A1 - Kübler, Stefan A1 - Eisermann, René T1 - Multiaxial fatigue damage of glass fiber reinforced polymers N2 - Fiber reinforced polymers (FRPs) are a well established material in lightweight applications, e.g. in automotive, aerospace or wind energy. The FRP components are subjected to multiaxial mechanical as well as hygrothermal loads. Common operation temperatures are in the range of 213 K and 373 K (-60 °C and 100 °C) at a relative humidity of 10% to 90%. In spacecraft applications, the environmental conditions are even more extreme. However, the correlation between multiaxial mechanical loading and harsh environment conditions have to-date not been investigated in detail. The project aims to investigate the fatigue behavior of FRPs dependent on multiaxial mechanical loading, temperature, and humidity. Extensive experimental testing is performed on flat plate and cylindrical tube specimens, accompanied by numerical and analytical calculations. T2 - 24. Nationales SAMPE Symposium CY - Dresden, Germany DA - 06.02.2019 KW - Composite KW - Fatigue KW - Thermomechanics KW - Distributed fiber optic sensors PY - 2019 AN - OPUS4-47335 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, Ralf A1 - Behrens, H. A1 - Deubener, J. T1 - Impact of structure and relaxation on fatigue and micromechanical properties of oxide glasses: the role of volatiles and bonding state N2 - As subcritical crack growth (SCCG) can reduce tensile strength of glasses by many orders of magnitude, the potential for improvement of fatigue behaviour is most intriguing in developing ultra-strong glasses. An essential bottleneck is the basic understanding of the numerous interplaying pressure-, temperature- and water-affected relaxation phenomena at the crack tip and related toughening strategies. Therefore, the present project aims to advance the basic understanding of structural relaxation effects and local properties caused by increased water concentration and tensile stresses at the crack tip as they are a key for structural toughening designs to develop SCCG-free glasses and glass surfaces. Our first studies give clear evidence that glass structure and dynamics is strongly modified upon hydration of glasses. These changes are highly related to the nature of network formers but are affected as well by the counter ions (network modifier). Results of the 1st project part suggest that structural relaxation below glass transition temperature, i.e. overlapping of short-range (beta) and long-range (alpha) interactions can contribute to SCCG in water-free environments and that structurally dissolved water in the glasses can have decisive impact on this effect. In the 2nd project stage specific glasses compositions will be investigated to gain an improved understanding on the relation of sub-Tg relaxation and inert SCCG as well as to shed light to the related effects of dissolved water and its speciation. These glasses cover a broader range of different glass topologies and binding partners, whereby the coupling of alpha and beta relaxations is varied systematically by alkali-, alkaline earth ions and water species concentrations. Preparation of hydrous glasses (up to 8 wt% water) will be performed by high pressure syntheses. Structure will be resolved by NMR, Raman and IR spectroscopy while structural relaxation is accessed in the temperature and frequency domain using dynamic mechanical spectroscopy and ultrasonic damping. We will focus on measurements of inert SCCG (region III) conducting experiments in vacuum and dry gas atmospheres using indentation techniques and stressing of glass specimens in DCB geometry. Experimental data on SCCG will be provided to SPP groups, which deals with fatigue in metallic glasses and vice versa we will test theoretical predictions of ab-initio simulations of partner within SPP 1594 in order to quantify the effect of water on the crack tip. In summa topological factors controlling the subcritical crack growth with respect to water will be identified from which structural toughening designs for highly fatigue resistant-glasses can be derived. N2 - Subkritisches Risswachstum (SCCG) kann die Zugfestigkeit von Glas um viele Größenordnungen erniedrigen. Deshalb birgt die Verbesserung des Ermüdungsverhaltens ein hohes Potential für das topologische Design hochfester Gläser. Ein diesbezüglicher Engpass ist das Verständnis der zahlreichen interagierenden druck-, temperatur- und wasserbeeinflussten Relaxationsphänomene an der Rissspitze und hieraus abgeleitete Verstärkungsstrategien. Ziel des Projekts ist es daher, das grundlegende Verständnis der Effekte, die infolge erhöhter Wasserkonzentrationen und Zugspannungen an der Rissspitze entstehen, zu vertiefen, da sie als ein Schlüssel für künftige strukturelle Designprinzipien zur Entwicklung schadenstoleranter Gläser und Glasoberflächen gelten. Unsere ersten Studien zeigen, dass die Struktur und Dynamik von Gläsern nach einer Hydration stark verändert sind. Diese Modifikationen sind mit der Art der Netzwerkbildner stark verknüpft, aber auch von ihren Gegenionen (Netzwerkwandler) abhängig. Die Ergebnisse des ersten Projektabschnitts legen nahe, dass strukturelle Relaxation unterhalb der Glasübergangstemperatur, d. h. ein Überlappen von kurz-reichweitigen (beta) und lang-reichweitigen (alpha) Wechselwirkungen, zum subkritisches Risswachstum in wasserfreien Umgebungen beitragen kann und, dass strukturell gelöstes Wasser in Gläsern sich entscheidend auf diese Effekt auswirken kann. Im zweiten Projektabschnitt werden daher spezielle Glaszusammensetzungen untersucht, die zu einem besseren Verständnis der Verbindung zwischen sub-Tg Relaxation und SCCG führen aber auch den Einfluss von gelöstem Wasser und dessen Speziation näher beleuchten. Diese Gläser weisen eine großen Breite an verschiedenen Topologien und Bindungspartnern auf, wobei die Kopplung von alpha und beta Relaxation durch Veränderungen in den Gehalten von Alkali-, Erdalkalionen und der Wasserspezies systematisch variiert wird. Die Präparation hydratisierter Gläser (bis zu 8 Ma.%) erfolgt mittels Hochdrucksynthesen. Die Glasstruktur wird durch NMR, Raman und IR Spektroskopie aufgeklärt während die Strukturrelaxation anhand dynamische mechanische Spektroskopie und Ultraschalldämpfung im Temperatur- und Frequenzraum erfasst wird. Im Fokus werden Messungen des inerten subkritischen Risswachstums (Region III) stehen, die Indenter-Experimente im Vakuum und trockenen Gasatmosphären sowie Verspannen von Glasproben in DCB Geometrie beinhalten. Experimentelle SCCG Daten werden Gruppen im Schwerpunktprogramm zur Verfügung stellen, die sich mit Ermüdung in metallischen Gläsern beschäftigen und im Gegenzug werden wir theoretische Vorhersagen aus ab initio Simulationen der Partner im SPP 1594 testen, um den Einfluss von Wasser auf die mechanischen Eigenschaften an der Rissspitze und deren Einfluss auf SCCG zu quantifizieren. In summa werden topologische Faktoren bezüglich Wasser, die SCCG kontrollieren, identifiziert, um daraus Designprinzipien für hoch ermüdungsresistente Gläser abzuleiten. T2 - Kolloquium des DFG-PP 1594 CY - Jena, Germany DA - 17.9.2015 KW - Glass KW - Fatigue PY - 2015 AN - OPUS4-38334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -