TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root N2 - In this study, the influence of the welding speed, the arc power, and the laser focal position on the solidification crack formation for partial penetration laser hybrid–welded thick-walled plates was investigated. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity, the crack number was decreased. The focal position shows also a significant influence on the crack number. By focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The metallurgical factors, such as the assumed accumulation of the low-melting eutectics in the weld root, should be a contribution for solidification cracking, where the tensile stress is acting. KW - Laser hybrid welding KW - Solidification cracking KW - Partial penetration welding KW - Weld root KW - Numerical simulation PY - 2020 U6 - https://doi.org/10.1007/s40194-020-00847-w VL - 64 SP - 501 EP - 511 PB - Springer AN - OPUS4-50625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -