TY - CONF A1 - Frei, J. A1 - Rethmeier, Michael T1 - Overview and new developments in research on resistance spot welding of advanced high strength steels N2 - The safe joining of new, freshly developed steel types keeps challenging the industry–and is assumed to go on in doing so. In the body-in-white production, these materials are mainly joined using resistance spot welding. During the past ten years, various investigations on resistance spot welding of advanced high strength steels have been carried out at Fraunhofer IPK and the Federal Institute for Materials Research and Testing (BAM). This paper aims to give an overview about both the top former and recent studies and results. The investigated topics are the influences of manufacturing conditions as initial gaps and restraints on spot welds, their impact on the fatigue strength of a joint and the cracking-wise safe weldability of AHSS. Caused by non-ideal manufacturing conditions, cracks in spot welds (e.g. caused by liquid metal embrittlement) are still regarded as a potential risk in industrial practice. Therefore, a method to evaluate the safe weldability regarding the cracking susceptibility was developed for AHSS. The method is easy to perform, even without expensive laboratory equipment. It allows the end user to establish a material ranking regarding the cracking susceptibility of the handled steels. Recently, coupled thermo-mechanical finite element modelling has been used to describe critical stress-strain conditions responsible for the occurrence of liquid metal embrittlement, and to improve the understanding of the process. T2 - The 5th International Conference on Steels in Cars and Trucks CY - Amsterdam-Schiphol, The Netherlands DA - 19.06.2017 KW - Advanced high strength steels KW - Resistance spot welding KW - Cracking susceptibility KW - Liquid metal embrittlement KW - Material ranking KW - Fatigue strength KW - Gaps KW - Finite element method PY - 2017 SP - 1 EP - 8 AN - OPUS4-43189 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -