TY - CONF A1 - Bäßler, Ralph T1 - ISO 27913 - Example For Successful Standardization Activities In The Field Of CCUS N2 - Since 2016 ISO Technical Committee (TC) 265 is working on standardization the whole CCS-process chain. Around 30 countries are working together to provide international guidelines. As ISO 27913 was the first standard finished within these activities it is already in the stage of first revision. The objective of ISO 27913 is “to provide specific requirements and recommendations on certain aspects of safe and reliable design, construction and operation of pipelines intended for the large-scale transportation of CO2 that are not already covered in existing pipeline standards such as ISO 13623, ASME B31.8, EN 1594, AS 2885 or other standards. Existing pipeline standards cover many of the issues related to the design and construction of CO2 pipelines; however, there are some CO2 specific issues that are not adequately covered in these standards. The purpose of this document is to cover these issues consistently. Hence, this document is not a standalone standard, but is written to be a supplement to other existing pipeline standards for natural gas or liquids for both onshore and offshore pipelines.” This contribution shall provide information on the content, the current stage of the revision process, encourage to contribute to this standard and make listeners aware to consider the influence of ISO standard on documents currently in draft. T2 - AMPP's Annual Conference + Expo 2024 CY - New Orleans, LA, USA DA - 02.03.2024 KW - Corrosion resistant materials KW - Carbon dioxide KW - Corrosion prevention KW - Standardization KW - CCUS KW - CCS KW - CCU PY - 2024 SP - 1 EP - 6 PB - AMPP CY - Houston AN - OPUS4-59735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wachtendorf, Volker A1 - Geburtig, Anja T1 - Digitale Umweltsimulation am Beispiel der Photooxidation von Polymeren N2 - Die Umweltwirkungen auf ein Material werden als Überlapp der Funktionskurven von Materialempfindlichkeit und einwirkenden Umweltparametern betrachtet. Wenn entweder die Empfindlichkeit oder die Beanspruchungen Null sind, ergibt sich auch keine Umweltwirkung und bei beidseitig Werten größer Null das jeweilige Produkt der beiden. Die Akkumulation der nicht-reversiblen Effekte über die Zeit und allen Eigenschaftsänderungen entspricht der Alterung des Materials für den jeweiligen Expositionszeitraum. Die digitale Umweltsimulation gliedert sich hier in drei Teilaspekte. Ein erster, rein materialwissenschaftlicher Teil hat die Aufgabe, alle relevanten Materialempfindlichkeiten experimentell zu quantifizieren. Ein zweiter – unter Umständen numerischer Teil – hat die Aufgabe, das Bauteil und seine Einbaulage zu digitalisieren und aus den makroskopischen Umgebungsbedingungen die relevanten mikroklimatischen Umweltparameter für alle Oberflächen- oder Volumenelemente zu bestimmen. In einem dritten Teil werden die Einwirkungen über den betrachteten Zeitraum berechnet und kumuliert. Dieses Konzept, das auf den so genannten Expositions-Reaktions-Funktionen (ERF) basiert, wird an Beispielen der Photoxidation erläutert. Dieses Vorgehen wurde schon beim ViPQuali-Projekt als Numerische Umweltsimulation umgesetzt. Überprüft werden muss das Modell unbedingt an einer realitätsnahen Validierungsbeanspruchung. Hier werden die ermittelten ERFs mit über den kompletten Beanspruchungszeitraum geloggten Umweltparametern gekoppelt, um die berechnete mit der experimentell erfahrenen Alterungswirkung zu vergleichen. Nur so kann sichergestellt sein, dass alle für die Anwendungsumgebung relevanten Materialempfindlichkeiten einbezogen wurden. T2 - 52. Jahrestagung der GUS CY - Stutensee-Blankenloch, Germany DA - 26.03.2024 KW - UV KW - Polymer 3R KW - Bewitterung KW - Bestrahlung PY - 2024 SN - 978-3-9826129-0-4 SP - 31 EP - 40 PB - Gesellschaft für Umweltsimulation e.V. CY - Pfinztal (Berghausen) AN - OPUS4-59830 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Schweißen im Wasserstoffanlagen- und Behälterbau - Eine Kurzübersicht N2 - Wasserstoff erfüllt die zentrale Rolle für die Umwandlung der bisherigen fossil-basierten Energieerzeugung und -nutzung auf eine dekarbonisierte, nachhaltige Form. Dazu muss der Wasserstoff erzeugt, gespeichert, transportiert werden, bevor er wieder der Nutzung zugeführt wird. Hierzu sind entlang der gesamtem Prozesskette Wasserstofftechnologien notwendig, die einen sicheren Betrieb erfordern. Hierbei kommt dem schweißtechnischen Anlagen- und Behälterbau wesentliche Bedeutung zu, insbesondere (aber nicht ausschließlich) für Speicherung und Transport des Wasserstoffes. Der vorliegende Beitrag gibt einen kurzen Überblick, wo und wie die konventionelle Schweißtechnik hierzu wichtige Beiträge leistet. Die additive Fertigung, also das „Drucken“ von Bauteilen wird dabei zunehmend wichtiger, entlang der gesamtem Prozesskette der Wasserstofftechnologien. Gleichwohl darf nicht unterschätzt werden, dass auch wesentlicher Bedarf an der Erweiterung und teilweiser Neufassung von bestehenden Regel- und Normenwerken besteht. T2 - 51. Sondertagung "Schweißen im Behälter- und Anlagenbau" CY - Munich, Germany DA - 01.03.2023 KW - Wasserstoff KW - Anlagenbau KW - Schweißen KW - Studie KW - Pipeline PY - 2023 SN - 978-3-96144-219-5 VL - 387 SP - 83 EP - 88 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-57075 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Baer, Wolfram ED - Bleicher, C. ED - Kaufmann, H. ED - Pittel, C. T1 - Chunky Graphite - Recognition, Quantification, and Impact on Properties of Spheroidal Graphite Cast Iron N2 - Since there is a continuously growing demand for complex, frequently heavy-sectioned spheroidal graphite cast iron (SGI) castings it is worth paying attention to the chunky graphite (CHG) degeneration which may occur under certain technological circumstances. Although a reference line for preventive actions in terms of general metallurgical and process measures could be drawn to avoid CHG in heavy-sectioned ferritic SGI castings, a broad majority of experts claim the avoidance of CHG in heavy sections cannot yet be rated a hundred percent process safe. A major reason may be seen in the fact that a universal, generally accepted explanation of CHG formation and growth has not yet been established, although several theories have been proposed. Nevertheless, metallurgical aspects are not in the focus of this paper. This paper is about the current state of methods to detect CHG in SGI on the laboratory and component scales. Capabilities and limits of different metallographic, fractographic and non-destructive computer tomographic methods to recognize and quantify CHG are discussed. With respect to the characteristic fili-gree three-dimensional string-like, multi-branched CHG structure, which is non-isometric and non-dispersed, serious implications on the possibility to quantitatively characterize the amount of CHG must be considered. In contrary to the metallurgical aspects, the knowledge about the impact of CHG on the materials and com-ponents properties is still surprisingly limited. Therefore, special emphasis of this paper is on the impact of CHG degeneration on the properties of ferritic SGI. Experimental results are reviewed to illustrate the effect of CHG on mechanical strength and ductility properties as well as fracture mechanics properties in terms of crack resistance and fracture toughness. The present situation is characterized by discussions and uncertainty about the acceptance or rejection of SGI components containing CHG. Addressing this, conclusions from the materials engineering point of view are drawn for quality control, a safe operational strategy in the foundry and component safety. T2 - InCeight Casting Conference 2023 CY - Darmstadt, Germany DA - 06.03.2023 KW - Fracture toughness KW - Chunky graphite KW - Structure KW - Recognition KW - Quantification KW - Ferritic spheroidal graphite cast iron KW - Tensile properties PY - 2023 SN - 978-3-8396-1892-9 SP - 1 EP - 11 PB - Fraunhofer Verlag AN - OPUS4-57120 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study on the formation of a bulging region in partial penetration laser beam welding N2 - A transient three-dimensional thermo-fluid dynamics numerical model was developed to study the formation of a bulging region in partial penetration laser beam welding. The model accounts for the coupling between the fluid flow, the heat transfer, and the keyhole dynamics by considering the effects of multiple reflections and Fresnel absorption of the laser beam in the keyhole, the phase transitions during melting and evaporating, the thermo-capillary convection, the natural convection, and the phase-specific and temperature-dependent material properties up to the evaporation temperature. The validity of the model was backed up by experimentally obtained data, including the drilling time, the weld pool length, the local temperature history outside the weld pool, the process efficiency, and a range of metallographic crosssections. The model was applied for the cases of partial penetration laser beam welding of 8 mm and 12 mm thick unalloyed steel sheets. The obtained experimental and numerical results reveal that the bulging region forms transiently depending on the penetration depth of the weld, showing a tendency to transition from a slight bulging to a fully developed bulging region between penetration depths of 6 mm and 9 mm, respectively. T2 - 13th International Seminar "Numerical Analysis of Weldability" CY - Seggau, Austria DA - 04.09.2022 KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 101 EP - 126 PB - Verlag der Technischen Universität Graz AN - OPUS4-58802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Kising, Pascal A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Rethmeier, Michael T1 - Numerical analysis of the dependency of the weld pool shape on turbulence and thermodynamic activity of solutes in laser beam welding of unalloyed steels N2 - A three-dimensional numerical model was developed to accurately predict the steady-state weld pool shape in full penetration laser beam welding. The model accounts for the coupling between the heat transfer and the fluid dynamics by considering the effects of solid/liquid phase transition, thermo-capillary convection, natural convection, and phase-specific and temperature-dependent material properties up to the evaporation temperature. A fixed right circular cone was utilized as a keyhole geometry to consider the heat absorbed from the laser beam. The model was used to analyze the influence of the thermodynamic activity of solutes and turbulence on the weld pool shape. A mesh sensitivity analysis was performed on a hybrid mesh combining hexahedral and tetrahedral elements. For the case of full penetration laser beam welding of 8 mm thick unalloyed steel sheets, the dependence of the weld pool shape on the surface-active element sulfur was found to be negligible. The analysis of the results showed that a laminar formulation is sufficient for accurately predicting the weld pool shape since the turbulence has a minor impact on the flow dynamics in the weld pool. The validity of the numerical results was backed up by experimental measurements and observations, including weld pool length, local temperature history, and a range of metallographic crosssections. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Weld pool shape KW - Numerical modeling KW - Laser beam welding KW - Thermo-capillary convection KW - Turbulence PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 161 EP - 188 PB - Verlag der Technischen Universität Graz AN - OPUS4-58803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Numerical analysis of the influence of an auxiliary oscillating magnetic field on suppressing the porosity formation in deep penetration laser beam alloys of aluminum alloys N2 - The contactless magnetohydrodynamic technology has been considered as a potential and promising method to improve the weld qualities of deep penetration laser beam welding. In this paper, numerical investigations are conducted to study the influence of the auxiliary oscillating magnetic field on the porosity suppression in laser beam welding of 5754 aluminum alloy. To obtain a deeper insight into the suppression mechanism, a three-dimensional transient multi-physical model is developed to calculate the heat transfer, fluid flow, keyhole dynamic, and magnetohydrodynamics. A ray tracing algorithm is employed to calculate the laser energy distribution on the keyhole wall. A time-averaged downward Lorentz force is produced by an oscillating magnetic field. This force acts in the molten pool, leading to a dominant downward flow motion in the longitudinal section, which blocks the bubble migration from the keyhole tip to the rear part of the molten pool. Therefore, the possibility for the bubbles to be captured by the solidification front is reduced. The electromagnetic expulsive force provides an additional upward escaping speed for the bubbles of 1 m/s ~ 5 m/s in the lower and middle region of the molten pool. The simulation results are in a good agreement with experimental measurements. Based on the results obtained in this study, a better understanding of the underlying physics in laser beam welding enhanced by an auxiliary oscillating magnetic field can be provided and thus the welding process can be further optimized reducing the porosity formation. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Deep penetration laser beam welding KW - Oscillating magnetic field KW - Numerical simulation KW - Porosity KW - Molten pool behaviour PY - 2023 SN - 2410-0544 VL - 13 SP - 237 EP - 254 PB - Verlag der Technischen Universität Graz AN - OPUS4-58804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Wu, Chuansong A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys N2 - The ultrasonic vibration enhanced friction stir welding (UVeFSW) process has unique advantages in joining dissimilar Al/Mg alloys. While there are complex coupling mechanisms of multi-fields in the process, it is of great significance to model this process, to reveal the influence mechanism of ultrasonic vibration on the formation of Al/Mg joints. In this study, the acoustic-plastic constitutive equation was established by considering the influence of both ultrasonic softening and residual hardening on the flow stress at different temperatures and strain rates. And the ultrasonic induced friction reduction (UiFR) effect on friction coefficient in different relative directions at the FSW tool-workpiece interface was quantitatively calculated and analyzed. The Al/Mg UVeFSW process model was developed through introducing the above acoustic effects into the model of Al/Mg friction stir welding (FSW). The ultrasonic energy is stronger on the aluminum alloy side. In the stirred zone, there is the pattern distribution of ultrasonic sound pressure and energy. The heat generation at the tool-workpiece contact interface and viscous dissipation were reduced after applying ultrasonic vibra-tion. Due to the UiFR effect, the projection of friction coefficient and heat flux distributions at the tool-workpiece interface present a "deformed" butterfly shape. The calculated results show that ultrasonic vibra-tion enhanced the material flow and promoted the mixing of dissimilar materials. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Friction stir welding KW - Ultrasonic vibration KW - Al/Mg alloys KW - Numerical simulation PY - 2023 SN - 2410-0544 VL - 13 SP - 517 EP - 538 PB - Verlag der Technischen Universität Graz AN - OPUS4-58805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - A numerical study on the suppression of a detrimental weld pool profile in wire feed laser beam welding by magnetohydrodynamic technique N2 - The weld quality and the possible defect formation are directly determined by the weld pool shape and the thermo-fluid dynamics therein. In this paper, an untypical weld pool profile, i.e., elongated at its top and bottom but narrowed at the middle, is found experimentally and numerically in the wire feed laser beam welding. The detrimental influence of the weld pool narrowing on the element transport is analyzed and discussed. A magnetohydrodynamic technique is utilized to suppress the narrowing, aiming at a more homogenous element distribution. It is found that a low-temperature region is formed in the middle of the weld pool due to the interaction of the two dominant circulations from the top and bottom regions. The weld pool is significantly narrowed due to the untypical growth of the mushy zone in the low-temperature region, which results in a direct blocking effect on the downward flow and the premature solidification in the middle region. The Lorentz force produced by a transverse oscillating magnetic field shows the potential to change the flow pattern into a single-circulation type and the low-temperature-gradient region is mitigated. Therefore, the downward transfer channel is widened, and its premature solidification is prevented. The numerical results are well validated by experimental measurements of metal/glass observation and X-ray fluorescence element mapping. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - Magnetohydrodynamics KW - Multi - physical modeling PY - 2023 SN - 2410-0544 VL - 13 SP - 143 EP - 160 PB - Verlag der Technischen Universität Graz AN - OPUS4-58806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 al alloy N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase of the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verifies the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains that have been solidified and formed previously from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 SP - 1 EP - 10 AN - OPUS4-58809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -