TY - CONF A1 - Heinekamp, Christian A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Metal fluoride surfaces by protonation with surface immobilized HF N2 - Lewis-acidic zirconium or chromium fluoride surfaces on different aluminium oxide or fluoride substrates. T2 - CRC 1349 Symposium 2021 CY - Berlin, Germany DA - 25.11.2021 KW - HF KW - Heterogeneous catalysis PY - 2021 AN - OPUS4-57226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Dunne, P. W. A1 - Pinna, Nicola T1 - Dispersible SnO2 nanoparticles - a structural phenomenon N2 - Previous work in the Dunne Group targeted dispersibility of metal oxide nanoparticles, which had been synthesised via an aqueous sol-gel route. Dispersibility was attained by solvothermal surface modification of the particles with trifluoro acetic acid. Part of the studies were tin oxide particles, which is known for its predominant rutile phase. Despite dispersibility in acetone of the particles unexpected peak splitting of the first (110) reflection was observed. Intensive long-term reaction studies on the tin oxide particles exhibited a time dependent extend of the peak splitting observed in XRD character-isation. Extended characterisation using solid-state multinuclear MAS-NMR spectroscopy indicate size dependent structure change due to partial fluorination of the particles during the solvothermal treatment. T2 - RSC Twitter Poster Conference 2022 CY - Online meeting DA - 01.03.2022 KW - SnO2 KW - Nanoparticles PY - 2022 AN - OPUS4-57225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Dunne, P. W. A1 - Pinna, N. T1 - Structure analysis of dispersible SnO2 nanoparticlesStructure analysis of dispersible SnO2 nanoparticles N2 - Previous work in the Dunne Group targeted dispersibility of metal oxide nanoparticles, which had been synthesised via an aqueous sol-gel route. Dispersibility was attained by solvothermal surface modification of the particles with trifluoro acetic acid (TFA). Part of the studies were tin oxide particles, which is known for its predominant rutile phase. Besides the dispersibility in acetone of the particles, an unexpected peak splitting of the (110) reflection was observed, which could be an unknown phase of SnO2 . For crystal growth long-term reaction studies on the tin oxide particles were performed. Interestingly these studies exhibited a time dependent extend of the peak splitting observed in XRD characterisation. Further extended analysis using multinuclear solid-state MAS-NMR spectroscopy indicate a size dependent structure change due to partial fluorination of the particles during the solvothermal treatment. T2 - SALSA Make and Measure 2022 CY - Online meeting DA - 07.09.2022 KW - SnO2 KW - Nanoparticles PY - 2022 AN - OPUS4-57201 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Karafiludis, Stephanos A1 - de Oliveira Guilherme Buzanich, Ana A1 - Heinekamp, Christian A1 - Smales, Glen Jacob A1 - Hodoroaba, Vasile-Dan A1 - ten Elshof, J. E. A1 - Emmerling, Franziska A1 - Stawski, Tomasz T1 - Template-free synthesis of mesoporous, amorphous transition metal phosphate materials N2 - We present how mesoporosity can be engineered in transition metal phosphate (TMPs) materials in a template-free manner. The method involves a transformation of a precursor metal phosphate phase, called M-struvite (NH4MPO4·6H2O, M = Mg2+, Ni2+, Co2+, NixCo1-x2+). It relies on the thermal decomposition of crystalline M-struvite precursors to an amorphous and simultaneously mesoporous phase, which forms while degassing of NH3 and H2O. The temporal evolution of mesoporous frameworks and the response of the metal coordination environment were followed with in-situ and ex-situ scattering and diffraction, as well as X -ray spectroscopy. Despite sharing the same precursor struvite structure, different amorphous and mesoporous structures were obtained depending on the involved transition metal. We highlight the systematic differences in absolute surface area, pore shape, pore size, and phase transitions depending on a metal cation present in the analogous M-struvites. The amorphous structures of thermally decomposed Mg-, Ni- and NixCo1-x-struvites exhibit high surface areas and pore volumes (240 m²g-1 and 0.32 cm-3 g-1 for Mg and 90 m²g-1 and 0.13 cm-3 g-1 for Ni). We propose that the low-cost, environmentally friendly M-struvites could be obtained as recycling products from industrial and agricultural wastewaters. These waste products could be then upcycled into mesoporous TMPs through a simple thermal treatment for further applications, for instance, in (electro)catalysis. KW - Struvite KW - Pphosphates KW - Transition metal KW - In-situ SAXS/WAXS KW - Mesoporosity PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569503 SN - 2040-3364 SP - 1 EP - 15 PB - Royal Society of Chemistry (RSC) AN - OPUS4-56950 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Kneiske, Sönke A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - A fluorolytic sol-gel route to access an amorphous Lewis-acidic Zr fluoride catalyst N2 - The Kemnitz et al. developed a fluorolytic route to access metal fluorides 1 such as AlF3 2 and MgF2 3 which possess a high surface area. In aluminium-based systems, the synthetic approach led to amorphous xerogels that can be further converted into Lewis superacids.2 Still, despite zirconium oxide being described as a stronger Lewis acid than other metal oxides4 zirconium fluoride-based materials have only recently been reported or investigated. In this work we extend the class of amorphous Lewis acidic heterogeneous catalysts to an amorphous ZrF4 that is active in C-F bond activation. T2 - CRC 1349 Summer School 2023 CY - Berlin, Germany DA - 28.08.2023 KW - ZrF4 KW - Heterogeneous catalysis KW - C-F bond activation KW - Postfluorination PY - 2023 AN - OPUS4-58638 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Kneiske, S. A1 - de Oliveira Guilherme Buzanich, Ana A1 - Braun, T. A1 - Emmerling, Franziska T1 - Synthesis of zirconiumfluorides using a sol-gel/postfluorination approach and their application in C-F bond activation N2 - ZrF4 species have shown to exhibit hard Lewis acidity in homogeneous systems. In order to study solid state Lewis acidic ZrF4 a sol-gel synthesis was adapted following previous approaches for AlF3 and a necessary post fluorination is being optimised to obtain a Lewis acidic heterogeneous catalyst for C-F bond activation. The influence of different Zr precursors was also studied while the local coordination sphere of a active species was found to be similar to β-ZrF4 using EXAFS of the Zr K-edge. T2 - RSC Twitter Poster Conference 2023 CY - Online meeting DA - 28.02.2023 KW - ZrF4 KW - Heterogeneous catalysis PY - 2023 AN - OPUS4-57227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - de Oliveira Guilherme Buzanich, Ana A1 - Ahrens, M. A1 - Braun, T. A1 - Emmerling, Franziska T1 - Exploring amorphous lewis-acidic zirconium chloro fluoride as a heterogeneous HF shuttle N2 - Owing to a growing shortage of fluorspar, a raw material used for producing fluorinated base chemicals, fluorspar has been named among the 30 critical raw materials in the EU. 1 However, the sustainable transfer of fluorine atoms from one molecule to another using heterogeneous catalysts has not yet been reported. Herein, we present the heterogeneous catalyst zirconium chloro fluoride (ZCF) that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - InSynX Workshop 2023 CY - Sao Paulo, Brazil DA - 06.03.2023 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation PY - 2023 AN - OPUS4-57228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bui, M. A1 - Hoffmann, K. F. A1 - Braun, T. A1 - Riedel, S. A1 - Heinekamp, Christian A1 - Scheurell, K. A1 - Scholz, G. A1 - Stawski, Tomasz A1 - Emmerling, Franziska T1 - An Amorphous Teflate Doped Aluminium Chlorofluoride: A Solid Lewis-Superacid for the Dehydrofluorination of Fluoroalkanes N2 - Ananion-dopedaluminiumchlorofluoride AlCl0.1F2.8(OTeF5)0.1(ACF-teflate) was synthesized.The material contains pentafluor-oorthotellurate(teflate)groups, which mimic fluoride ions electronically, but are sterically more demanding. They are embedded into the amorphous structure. The latter was studied by PDF analysis, EXAFS data and MAS NMR spectroscopy. The mesoporous powder is a Lewis superacid, and ATR-IR spectra of adsorbed CD3CN reveal a blue-shift of the adsorption band by73 cm-1, which is larger than the shift for SbF5. Remarkably,ACF-teflate catalyzes dehydrofluorination reactions of mono-fluoroalkanes to yield olefins in C6D6. In these cases,no Friedel-Crafts products were formed. KW - Aluminium fluorides KW - Aluminium teflates KW - C-F bond activation KW - Lewis superacids KW - Silanes PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-572290 SN - 1867-3880 SP - 1 EP - 7 PB - Wiley VHC-Verlag AN - OPUS4-57229 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Kneiske, Sönke A1 - Ahrens, Mike A1 - Braun, Thomas A1 - Emmerling, Franziska T1 - EXAFS elucidating local structure of zirconium based aorphous heterogeneous catalysts in C-F bond activation N2 - Amorphous materials play an important role in C-F bond activation but face the difficulty of limited available structural information by methods such as powder XRD and solid-state MAS NMR spectroscopy especially if the nucleus is not abundant enough. Here, we present heterogeneous catalysts, active in C-F bond activation, where EXAFS allowed specifically elucidating the local structure, which would have not been possible elsewise. T2 - HZB User Meeing 2023 CY - Berlin, Germany DA - 22.06.2023 KW - Catalysis KW - Zirconium KW - C-F bond activation PY - 2023 AN - OPUS4-59615 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heinekamp, Christian A1 - Guiherme Buzanich, Ana A1 - Ahrens, Mike A1 - Emmerling, Franziska A1 - Braun, Thomas T1 - Zirconium chloro fluoride as catalyst for C-F bond activation and HF transfer of fluoroalkanes N2 - In this work, we successfully synthesized amorphous zirconium chloro fluoride (ZCF), which exhibits medium lewis acidity. In addition to investigating the local coordination sphere around the Zr atoms and the material properties, we were able to establish a catalytic behavior of ZCF in C-F bond activation reactions. We present a heterogeneous catalyst that performs dehydrofluorination of a fluoroalkane and consecutive hydrofluorination of an alkyne at room temperature. T2 - MC 16 CY - Dublin, Ireland DA - 03.07.2023 KW - ZCF KW - Heterogeneous catalysis KW - C-F bond activation PY - 2023 AN - OPUS4-58052 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -