TY - JOUR A1 - Breßler, Ingo A1 - Kohlbrecher, J. A1 - Thünemann, Andreas T1 - SASfit: a tool for small-angle scattering data analysis using a library of analytical expressions N2 - SASfit is one of the mature programs for small-angle scattering data analysis and has been available for many years. This article describes the basic data processing and analysis workflow along with recent developments in the SASfit program package (version 0.94.6). They include (i) advanced algorithms for reduction of oversampled data sets, (ii) improved confidence assessment in the optimized model parameters and (iii) a flexible plug-in system for custom user-provided models. A scattering function of a mass fractal model of branched polymers in solution is provided as an example for implementing a plug-in. The new SASfit release is available for major platforms such as Windows, Linux and MacOS. To facilitate usage, it includes comprehensive indexed documentation as well as a web-based wiki for peer collaboration and online videos demonstrating basic usage. The use of SASfit is illustrated by interpretation of the small-angle X-ray scattering curves of monomodal gold nanoparticles (NIST reference material 8011) and bimodal silica nanoparticles (EU reference material ERM-FD-102). KW - Small-angle X-ray scattering KW - Small-angle neutron scattering KW - Curve fitting KW - Nanotechnology KW - Nanoparticles KW - Polymers KW - SAXS PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-343348 SN - 0021-8898 SN - 1600-5767 VL - 48 SP - 1587 EP - 1598 PB - Blackwell CY - Oxford AN - OPUS4-34334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Breßler, Ingo A1 - Pauw, Brian Richard A1 - Thünemann, Andreas T1 - McSAS: software for the retrieval of model parameter distributions from scattering patterns N2 - A user-friendly open-source Monte Carlo regression package (McSAS) is presented, which structures the analysis of small-angle scattering (SAS) using uncorrelated shape-similar particles (or scattering contributions). The underdetermined problem is solvable, provided that sufficient external information is available. Based on this, the user picks a scatterer contribution model (or 'shape') from a comprehensive library and defines variation intervals of its model parameters. A multitude of scattering contribution models are included, including prolate and oblate nanoparticles, core-shell objects, several polymer models, and a model for densely packed spheres. Most importantly, the form-free Monte Carlo nature of McSAS means it is not necessary to provide further restrictions on the mathematical form of the parameter distribution; without prior knowledge, McSAS is able to extract complex multimodal or odd-shaped parameter distributions from SAS data. When provided with data on an absolute scale with reasonable uncertainty estimates, the software outputs model parameter distributions in absolute volume fraction, and provides the modes of the distribution (e.g. mean, variance etc.). In addition to facilitating the evaluation of (series of) SAS curves, McSAS also helps in assessing the significance of the results through the addition of uncertainty estimates to the result. The McSAS software can be integrated as part of an automated reduction and analysis procedure in laboratory instruments or at synchrotron beamlines. KW - Nanotechnology KW - Nanoparticles KW - Small-angle X-ray scattering KW - SAXS PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-334396 SN - 0021-8898 SN - 1600-5767 VL - 48 IS - 3 SP - 962 EP - 969 PB - Blackwell CY - Oxford AN - OPUS4-33439 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kathan, M. A1 - Kovaricek, P. A1 - Jurissek, Ch. A1 - Senf, A. A1 - Dallmann, A. A1 - Thünemann, Andreas A1 - Hecht, S. T1 - Control of Imine Exchange Kinetics with Photoswitches to Modulate Self-Healing in Polysiloxane Networks by Light Illumination N2 - Various aldehyde-containing photoswitches have been developed whose reactivity toward amines can be controlled externally. A thermally stable bifunctional diarylethene, which in its ring-closed form exhibits imine formation accelerated by one order of magnitude, was used as a photoswitchable crosslinker and mixed with a commercially available amino-functionalized polysiloxane to yield a rubbery material with viscoelastic and self-healing properties that can be reversibly tuned by irradiation. KW - Polymer KW - Self-healing KW - Rheology KW - Nanotechnology PY - 2016 U6 - https://doi.org/10.1002/anie.201605311 SN - 1433-7851 (print) SN - 1521-3773 (online) VL - 55 IS - 44 SP - 13882 EP - 13886 PB - Wiley-VCH Verlag GmbH CY - Weinheim AN - OPUS4-37904 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Oberemm, A. A1 - Hansen, Ulf A1 - Böhmert, L. A1 - Meckert, C. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Lampen, A. T1 - Proteomic responses of human intestinal Caco-2 cells exposed to silver nanoparticles and ionic silver N2 - Even although quite a number of studies have been performed so far to demonstrate nanoparticle-specific effects of substances in living systems, clear evidence of these effects is still under debate. The present study was designed as a comparative proteomic analysis of human intestinal cells exposed to a commercial silver nanoparticle reference material and ions from AgNO3. A two-dimensional gel electrophoresis/MALDI mass spectrometry (MS)-based proteomic analysis was conducted after 24-h incubation of differentiated Caco-2 cells with non-cytotoxic and low cytotoxic silver concentrations (2.5 and 25 µg ml−1 nanosilver, 0.5 and 5 µg ml−1 AgNO3). Out of an overall number of 316 protein spots differentially expressed at a fold change of ≥ 1.4 or ≤ −1.4 in all treatments, 169 proteins could be identified. In total, 231 spots were specifically deregulated in particle-treated groups compared with 41 spots, which were limited to AgNO3-treatments. Forty-four spots (14 %) were commonly deregulated by both types of treatment. A considerable fraction of the proteins differentially expressed after treatment with nanoparticles is related to protein folding, synthesis or modification of proteins as well as cellular assembly and organization. Overlays of networks obtained for particulate and ionic treatments showed matches, indicating common mechanisms of combined particle and ionic silver exposure and exclusive ionic silver treatment. However, proteomic responses of Caco-2 cells treated with higher concentrations of silver species also showed some differences, for example regarding proteins related to fatty acid and energy metabolism, suggesting an induction of also some different molecular mechanisms for particle exposure and ionic treatment. KW - Nanoparticle KW - Nanosilver KW - Silver PY - 2016 U6 - https://doi.org/10.1002/jat.3231 SN - 1099-1263 VL - 36 SP - 404 EP - 413 PB - Wiley CY - Chichester AN - OPUS4-35301 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hansen, Ulf A1 - Thünemann, Andreas T1 - Considerations using silver nitrate as a reference for in vitro tests with silver nanoparticles N2 - Most in vitro tests regarding the cellular toxicology of nanoparticulate metals compare particle to associated metal ion exposure. However. it is also a fact. that for example silver ions are reduced by sugars or transformed to silver chloride by chloride salts which are abundant components of cell culture media. These reactions are likely to either complicate or even invalidate comparisons between effects of ions and particles. Here. we present a fast and quantitative method to determine particle formation and numbers in different cell culture media with non-destructive small-angle X-ray scattering (SAXS). Silver nitrate with a concentration of25 (.Jg Ag mL -I was dissolved for up to 24 h at 37 'C in Dulbeccos Modified Eagle Medium (DMEM) with and without 10% fetal bovine serum (FBS) and a solution ofO-glucose (4.5 (.Jg mL -1). respectively. Silver nanopartides were observed in all Solutions after 5 min. The cell culture media displayed a limited particle-growth. FBS showed an effect on the polydispersity of the generated particles but after 5 min the overall particle size was nearly equal in FBS and non FBS supplemented medium. Particles in D-glucose were precipitating after 10 min. Particulate silver concentration was between 3 and 4 (.Jg mL -1 in both cell culture media (CCM). These results should be taken into account when performing silver ion-toxicity experiments in relevant media. KW - Silver nanoparticles KW - In vitro tests KW - Silver nitrate KW - SAXS KW - DLS KW - SEM PY - 2016 U6 - https://doi.org/10.1016/j.tiv.2016.03.014 SN - 0887-2333 VL - 34 SP - 120 EP - 122 PB - Elsevier AN - OPUS4-35844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kästner, Claudia A1 - Thünemann, Andreas T1 - Catalytic reduction of 4-nitrophenol using silver nanoparticles with adjustable activity N2 - We report on the development of ultra-small core-shell silver nanoparticles synthesized by an up-scaled modification of the polyol process. It is foreseen to use these thoroughly characterized particles as reference material to compare the catalytic and biological properties of functionalized silver nanoparticles. Small-angle X-ray scattering (SAXS) analysis reveal a narrow size distribution of the silver cores with a mean radius of RC = 3.0 nm and a distribution width of 0.6 nm. Dynamic light scattering (DLS) provides a hydrodynamic radius of RH = 10.0 nm and a PDI of 0.09. The particles’ surface is covered with poly(acrylic acid) (PAA) forming a shell with a thickness of 7.0 nm, which provides colloidal stability lasting for more than six months at ambient conditions. The PAA can be easily exchanged by biomolecules to modify the surface functionality. Replacements of PAA with glutathione (GSH) and bovine serum albumin (BSA) have been performed as examples. We demonstrate that the particles effectively catalyze the reduction of 4-nitrophenol to 4-aminophenol with sodium borohydride. With PAA as stabilizer, the catalytic activity of 436 ± 24 L g⁻¹ s⁻¹ is the highest reported in literature for silver nanoparticles. GSH and BSA passivate the surface substantially resulting in a catalytic activity of 77.6 ± 0.9 and 3.47 ± 0.50 L g⁻¹ s⁻¹, respectively. KW - Silver nanoparticles KW - Catalysis KW - Reference material KW - Protein coating PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-370655 SN - 0743-7463 SN - 1520-5827 VL - 32 IS - 29 SP - 7383 EP - 7391 AN - OPUS4-37065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Fuhrmann, A. A1 - Göstl, R. A1 - Wendt, R. A1 - Kötteritzsch, J. A1 - Hager, M. D. A1 - Schubert, U. S. A1 - Brademann-Jock, Kerstin A1 - Thünemann, Andreas A1 - Nöchel, U. A1 - Behl, M. A1 - Hecht, S. T1 - Conditional repair by locally switching the thermal healing capability of dynamic covalent polymers with light N2 - Healable materials could play an important role in reducing the environmental footprint of our modern technological society through extending the life cycles of consumer products and constructions. However, as most healing processes are carried out by heat alone, the ability to heal damage generally kills the parent material’s thermal and mechanical properties. Here we present a dynamic covalent polymer network whose thermal healing ability can be switched ‘on’ and ‘off’ on demand by light, thereby providing local control over repair while retaining the advantageous macroscopic properties of static polymer networks. We employ a photoswitchable furan-based crosslinker, which reacts with short and mobile maleimidesubstituted poly(lauryl methacrylate) chains forming strong covalent bonds while simultaneously allowing the reversible, spatiotemporally resolved control over thermally induced de- and re-crosslinking. We reason that our system can be adapted to more complex materials and has the potential to impact applications in responsive coatings, photolithography and microfabrication. KW - Small-angle X-ray scattering KW - SAXS KW - Polymer PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-386689 SN - 2041-1723 VL - 7 SP - Article 13623, 1 EP - 7 PB - NATURE PUBLISHING GROUP CY - MACMILLAN BUILDING, 4 CRINAN ST, LONDON N1 9XW, ENGLAND AN - OPUS4-38668 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liebig, F. A1 - Thünemann, Andreas A1 - Koetz, J. T1 - Ostwald Ripening Growth Mechanism of Gold Nanotriangles in Vesicular Template Phases N2 - The mechanism of nanotriangle formation in multivesicular vesicles (MMV) is investigated by using time-dependent SAXS measurements in combination with UV−vis spectroscopy, light, and transmission electron microscopy. In the first time period 6.5 nm sized spherical gold nanoparticles are formed inside of the vesicles, which build up soft nanoparticle aggregates. In situ SAXS experiments show a linear increase of the volume and molar mass of nanotriangles in the second time period. The volume growth rate of the triangles is 16.1 nm3/min, and the growth rate in the vertical direction is only 0.02 nm/min. Therefore, flat nanotriangles with a thickness of 7 nm and a diameter of 23 nm are formed. This process can be described by a diffusionlimited Ostwald ripening growth mechanism. TEM micrographs visualize soft coral-like structures with thin nanoplatelets at the periphery of the aggregates, which disaggregate in the third time period into nanotriangles and spherical particles. The 16 times faster growth of nanotriangles in the lateral than that in the vertical direction is related to the adsorption of symmetry breaking components, i.e., AOT and the polyampholyte PalPhBisCarb, on the {111} facets of the gold nanoplatelets in combination with confinement effects of the vesicular template phase. KW - Gold KW - Nanoparticle KW - Small-angle x-ray scattering KW - SAXS KW - Kinetics PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-379261 SN - 0743-7463 VL - 32 IS - 42 SP - 10928 EP - 10935 PB - American Chemical Society AN - OPUS4-37926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Juling, S. A1 - Niedzwiecka, A. A1 - Böhmert, L. A1 - Lichtenstein, D. A1 - Selve, S. A1 - Braeuning, A. A1 - Thünemann, Andreas A1 - Krause, E. A1 - Lampen, A. T1 - Protein Corona Analysis of Silver Nanoparticles Links to Their Cellular Effects N2 - The breadth of applications of nanoparticles and the access to food-associated consumer products containing nanosized materials lead to oral human exposure to such particles. In biological fluids nanoparticles dynamically interact with biomolecules and form a protein corona. Knowledge about the protein corona is of great interest for understanding the molecular effects of particles as well as their fate inside the human body. We used a mass spectrometry-based toxicoproteomics approach to elucidate mechanisms of toxicity of silver nanoparticles and to comprehensively characterize the protein corona formed around silver nanoparticles in Caco-2 human intestinal epithelial cells. Results were compared with respect to the cellular function of proteins either affected by exposure to nanoparticles or present in the protein corona. A transcriptomic data set was included in the analyses in order to obtain a combined multiomics view of nanoparticle-affected cellular processes. A relationship between corona proteins and the proteomic or transcriptomic responses was revealed, showing that differentially regulated proteins or transcripts were engaged in the same cellular signaling pathways. Protein corona analyses of nanoparticles in cells might therefore help in obtaining information about the molecular consequences of nanoparticle treatment. KW - Silver nanoparticles KW - Protein KW - Small-angle X-ray scattering KW - SAXS PY - 2017 U6 - https://doi.org/10.1021/acs.jproteome.7b00412 SN - 1535-3893 SN - 1535-3907 VL - 16 IS - 11 SP - 4020 EP - 4034 PB - Americal Chemical Society AN - OPUS4-42688 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lichtenstein, D. A1 - Meyer, T. A1 - Böhmert, L. A1 - Juling, S. A1 - Fahrenson, C. A1 - Selve, S. A1 - Thünemann, Andreas A1 - Meijer, J. A1 - Estrela-Lopis, I. A1 - Braeuning, A. A1 - Lampen, A. T1 - Dosimetric quantification of coating-related uptake of silver nanoparticles N2 - The elucidation of mechanisms underlying the cellular uptake of nanoparticles (NPs) is an important topic in nanotoxicological research. Most studies dealing with silver NP uptake provide only qualitative data about internalization efficiency and do not consider NP-specific dosimetry. Therefore, we performed a comprehensive comparison of the cellular uptake of differently coated silver NPs of comparable size in different human intestinal Caco-2 cell-derived models to cover also the influence of the intestinal mucus barrier and uptake-specialized M-cells. We used a combination of the Transwell system, transmission electron microscopy, atomic absorption spectroscopy, and ion beam microscopy techniques. The computational in vitro sedimentation, diffusion, and dosimetry (ISDD) model was used to determine the effective dose of the particles in vitro based on their individual physicochemical characteristics. Data indicate that silver NPs with a similar size and shape show coating-dependent differences in their uptake into Caco-2 cells. The internalization of silver NPs was enhanced in uptake-specialized M-cells while the mucus did not provide a substantial barrier for NP internalization. ISDD modeling revealed a fivefold underestimation of dose–response relationships of NPs in in vitro assays. In summary, the present study provides dosimetry-adjusted quantitative data about the influence of NP coating materials in cellular uptake into human intestinal cells. Underestimation of particle effects in vitro might be prevented by using dosimetry models and by considering cell models with greater proximity to the in vivo situation, such as the M-cell model. KW - Silver nanoparticles KW - Small-angle X-ray scattering KW - Saxs PY - 2017 U6 - https://doi.org/10.1021/acs.langmuir.7b01851 SN - 0743-7463 VL - 33 IS - 45 SP - 13087 EP - 13097 PB - Americal Chemical Society AN - OPUS4-42875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -