TY - CONF A1 - Ávila, Luis A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Assessing the low cycle fatigue behaviour of additively manufactured Ti-6Al-4V: Challenges and first results N2 - The understanding of process-microstructure-property-performance (PMPP) relationships in additive manufacturing (AM) of metals is highly necessary to achieve wide-spread industrial application and replace conventionally manufactured parts, especially regarding safety-relevant applications. To achieve this understanding, reliable data and knowledge regarding material’s microstructure-property relationships (e.g. the role of defects) is needed, since it represents the base for future more targeted process optimizations and more reliable calculations of performance. However, producing reliable material data and assessing the AM material behaviour is not an easy task: big challenges are e.g. the actual lack of standard testing methods for AM materials and the occasional difficulties in finding one-to-one comparable material data for the conventional counterpart. This work aims to contribute to end this lack of reliable material data and knowledge for the low cycle fatigue behaviour of the most used titanium alloy in aerospace applications (Ti-6Al-4V). For this purpose, two sets of test specimens were investigated. The first set was manufactured from cylindrical rods produced by an optimized DED-L process and the second was manufactured from a hot formed round bar. The test specimens were cyclically loaded until failure in the low-cycle-fatigue (LCF) regime. The tests were carried out according to ISO 12106 between 0.3 to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behaviour is described and compared between materials and with literature values based on cyclic deformation curves and strain-based fatigue life curves. Besides, the parameters of Manson-Coffin-Basquin relationship were calculated. The microstructures (initial and after failure) and fracture surfaces were comparative characterized. Thereby, the focus lied on understanding the role of grain morphology and defects on the failure mechanisms and fatigue lifetimes. For this latter characterization, optical microscopy (OM), scanning electron microscopy (SEM) and micro computed tomography (µCT) were used. T2 - 4th International Symposium on Fatigue Design and Material Defects CY - Online meeting DA - 26.05.2020 KW - Ti-6Al-4V KW - Additive manufacturing KW - Low cycle fatigue KW - Micro computed tomography KW - Microstructure PY - 2020 AN - OPUS4-50893 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ávila Calderón, Luis Alexander A1 - Graf, B. A1 - Rehmer, Birgit A1 - Petrat, T. A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Characterization of Ti-6Al-4V fabricated by multilayer laser powder-based directed energy deposition JF - Advanced engineering materials N2 - Laser powder-based directed energy deposition (DED-L) is increasingly being used in additive manufacturing (AM). As AM technology, DED-L must consider specific challenges. It must achieve uniform volume growth over hundreds of layers and avoid heat buildup of the deposited material. Herein, Ti–6Al–4V is fabricated using an approach that addresses these challenges and is relevant in terms of transferability to DED–L applications in AM. The assessment of the obtained properties and the discussion of their relationship to the process conditions and resulting microstructure are presented. The quality of the manufacturing process is proven in terms of the reproducibility of properties between individual blanks and with respect to the building height. The characterization demonstrates that excellent mechanical properties are achieved at room temperature and at 400 °C. KW - AGIL KW - Laser powder-based directed energy deposition KW - Tensile properties KW - Ti-6Al-4V KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542262 DO - https://doi.org/10.1002/adem.202101333 SN - 1438-1656 SN - 1527-2648 SP - 1 EP - 15 PB - Wiley-VCH CY - Weinheim AN - OPUS4-54226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Schriever, Sina A1 - Ulbricht, Alexander A1 - Agudo Jácome, Leonardo A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Skrotzki, Birgit T1 - Creep and fracture behavior of conventionally and additively manufactured stainless steel 316L N2 - A critical task within the frame of establishing process-structure-property-performance relationships in additive manufacturing (AM) of metals is producing reliable and well-documented material behavior’s data and knowledge regarding the structure-property correlation, including the role of defects. After all, it represents the basis for developing more targeted process optimizations and more reliable predictions of performance in the future. Within this context, this contribution aims to close the actual gap of limited historical data and knowledge concerning the creep behavior of the widely used austenitic stainless steel 316L, manufactured by Laser-Powder-Bed-Fusion (L-PBF). To address this objective, specimens from conventional hot-rolled and AM material were tested under application-relevant conditions according to existing standards for conventional material, and microstructurally characterized before and after failure. The test specimens were machined from single blocks from the AM material. The blocks were manufactured using a standard scan and build-up strategy and were subsequently heat-treated. The creep behavior is described and comparatively assessed based on the creep lifetime and selected creep curves and characteristic values. The effect of defects and microstructure on the material’s behavior is analyzed based on destructive and non-destructive evaluations on selected specimens. The AM material shows shorter creep lives, reaches the secondary creep stage much faster and at a lower strain, and features lower creep ductility compared to its conventional counterpart. The creep damage behavior of the AM material is more microstructure than defect controlled and is characterized by the formation and accumulation of single intergranular damage along the whole volume. Critical features identified are the grain morphology and the grain-boundary as well as the dislocation’s density. Micro-computed tomography (µCT) proves to be an alternative to metallography to analyze the creep damage. T2 - ASTM International Conference on Additive Manufacturing 2020 CY - Online meeting DA - 16.11.2020 KW - 316L KW - Creep behavior KW - Laser powder bed fusion KW - Additive manufacturing KW - Microstructure PY - 2020 AN - OPUS4-51823 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Ávila Calderón, Luis Alexander T1 - Mechanisches Verhalten von additiv gefertigtem nichtrostendem Stahl X2CrNiMo17-12-2 (AISI 316L) und Vergleich zur konventionell gefertigten Variante T1 - Mechanical behavior of additively manufactured stainless steel X2CrNiMo17-12-2 (AISI 316L) and comparison with a conventionally manufactured variant N2 - Die additive Fertigung (AM) metallischer Werkstoffe ist eine Technologie, die zunehmend Gegenstand von Forschungsaktivitäten und industrieller Anwendung ist. Dennoch steht sie noch vor Herausforderungen, um eine breite Nutzung in sicherheitsrelevanten Anwendungen zu erreichen. Die Hauptgründe für die Verzögerung des technologischen Durchbruchs zugunsten von AM-Metallen gegenüber konventionell hergestellten Varianten sind das Fehlen eines tieferen Verständnisses der Prozess-Struktur-Eigenschafts-Beziehungen und die begrenzte Verfügbarkeit von Daten zu den Materialeigenschaften. In diesem Kontext stellt diese Arbeit einen Beitrag sowohl zum Verständnis der Prozess-Struktur-Eigenschafts-Beziehungen als auch zur Verbesserung der Datenlage von 316L dar, einem häufig als Konstruktionswerkstoff in verschiedenen Hochtemperaturbauteilen verwendeten Werkstoff. Die Arbeit legt den Fokus auf die mittels Laser-Pulverbettschmelzen hergestellte Werkstoffvariante, PBF-LB/M/316L. Eine konventionell hergestellte Variante, HR/316L, wurde auch untersucht. Bei PBF-LB/M/316L wurde zusätzlich der Effekt ausgewählter Wärmebehandlungen ausgewertet. Die Untersuchung umfasste die Charakterisierung der mechanischen Eigenschaften und der Verformungs- und Schädigungsmechanismen bei erhöhten Prüftemperaturen bei LCF und Kriechen, wo die Daten und Wissenslage am spärlichsten ist. Außerdem hat die untersuchte PBF-LB/M/316L-Wersktoffvariante einen geringen Porositätsgrad. Somit hat diese Arbeit die Mikrostruktur stärker in den Fokus genommen als die meisten bisher in der Literatur verfügbaren Studien. Die mechanische Prüfkampagne umfasste Zugversuche zwischen Raumtemperatur und 650 °C, LCF-Versuche zwischen Raumtemperatur und 600 °C sowie Kriechversuche bei 600 °C und 650 °C. In Ermangelung konkreter Richtlinien und Normen wurde die Charakterisierung zumeist anhand der bestehenden internationalen Prüfnormen und Probengeometrien durchgeführt. Aus jedem dieser Prüfverfahren wurden die entsprechenden Festigkeits- und Verformungskennwerte ermittelt. Darüber hinaus wurde mit Hilfe gezielter mikrostruktureller Untersuchungen ein Beitrag zum Verständnis des Zusammenhangs zwischen der Mikrostruktur und den mechanischen Eigenschaften in Bezug auf die Verformungs- und Schädigungsmechanismen geleistet. Die Dehngrenze von PBF-LB/M/316L ist etwa doppelt so hoch wie die von HR/316L und dieser Trend setzt sich mit ansteigender Prüftemperatur fort. Die Bruchdehnung ist bei allen Prüftemperaturen geringer. PBF-LB/M/316L weist über den größten Teil der Ermüdungslebensdauer vor allem bei Raumtemperatur höhere zyklische Spannungen als HR/316L auf. Ausschließlich bei den kleinsten Dehnungs-schwingbreiten sind die Ermüdungslebensdauer ausgeprägt kürzer. Das Wechselverformungsverhalten von PBF-LB/M/316L ist durch eine Anfangsverfestigung gefolgt von einer kontinuierlichen Entfestigung charakterisiert, welche bis zum Auftreten der zum Versagen führenden Entfestigung stattfindet. Die Kriechbruchzeiten und die Dauer jeder Kriechphase sind bei allen Kombinationen von Prüfparametern bei PBF-LB/M/316 kürzer als bei HR/316L. Die Spannungsabhängigkeit von PBF-LB/M/316L ist im Vergleich zu HR/316L geringer und die Duktilität beim Kriechen kleiner. Die minimale Kriechrate wird bei allen geprüften Parameterkombinationen bei deutlich geringeren Kriechdehnungen erreicht. Eine Wärmebehandlung bei 450 °C / 4 h bewirkt keine wesentliche Änderungen der Mikrostruktur und Zugversuchseigenschaften. Eine zusätzliche Wärmebehandlung bei 900 °C / 1 h verursacht eine Abnahme der Dehngrenze des PBF-LB/M/316L. Diese blieb aber immer noch um den Faktor 1,5x höher als bei HR/316L. Die Verformungsmerkmale wurden kaum davon beeinflusst. Bezüglich des Kriechverhaltens hat die Wärmebehandlung bei 900 °C / 1 h längere sekundäre und tertiäre Kriechstadien bewirkt und die Kriechdehnung hat sich signifikant erhöht. Die Bruchbilder unterscheiden sich generell nicht nur aber vor allem mit ansteigender Prüftemperatur, bei der bei PBF-LB/M/316L oft interkristalline Rissbildung beobachtet wurde. Die Zellstruktur trägt als der Hauptfaktor zu den unterschiedlichen mechanischen Eigenschaften im Vergleich zur HR/316L-Variante bei. Darüber hinaus spielen mutmaßlich die Kornmorphologie, die Stapelfehlerenergie und der Stickstoffgehalt eine Rolle. N2 - Metal additive manufacturing (AM) is a technology that is increasingly the subject of research activities and industrial applications. However, it still faces challenges to achieve widespread use in safety-relevant applications. The main reasons for the delay of this technological breakthrough in favor of AM metals over conventionally manufactured variants are the lack of a deeper understanding of process-structure-property relationships and the limited availability of data on material properties. In this context, this work contributes to both achieving a better understanding of process-structure-property relationships and the improvement of data for 316L, an alloy frequently used as a structural material in various high-temperature components. The work focuses on a material variant produced by laser pow-der bed fusion, PBF-LB/M/316L. A conventionally produced variant, HR/316L, was also investigated. For PBF-LB/M/316L, the effect of selected heat treatments was also evaluated. The investigation included the characterization of the mechanical properties and the related deformation and damage mechanisms at elevated test temperatures in LCF and creep, where data and knowledge are scarce. The PBF-LB/M/316L variant studied has a low degree of porosity. Thus, this work is more focused on the microstructure than most studies available in the literature. The mechanical test campaign included tensile tests between room temperature and 650 °C, LCF tests between room temperature and 600 °C, and creep tests at 600 °C and 650 °C. In the absence of concrete guidelines and standards for testing of AM metals, the characterization mostly took place using existing international test standards and specimen geometries. From each of the test methods, corresponding strength, and deformation characteristic values were determined. In addition, targeted microstructural investigations contributed to understanding the relationship between the microstructure and the mechanical properties in terms of deformation and damage mechanisms. The proof stress of PBF-LB/M/316L is about twice that of HR/316L. This trend remains with increasing test temperature. The elongation after fracture is lower at all test temperatures. Regarding LCF, PBF-LB/M/316L exhibits higher cyclic stresses than HR/316L for most of the fatigue life, especially at room temperature. Exclusively at the smallest strain amplitudes, the fatigue lives of PBF-LB/M/316L are markedly shorter than in HR/316L. The cyclic stress-strain deformation behavior of PBF-LB/M/316L features an initial strain hardening followed by a continuous softening, which occurs until the softening leading to failure takes place. The creep rupture times and the duration of each creep stage are shorter for PBF-LB/M/316 than for HR/316L for all combinations of test parameters. The stress dependence of PBF-LB/M/316L is lower, and the creep ductility is smaller compared to HR/316L. The minimum creep rate is reached at significantly lower creep extensions for all parameter combinations tested. A heat treatment at 450 °C / 4 h did not cause significant changes in the microstructure and tensile behavior. An additional heat treatment at 900 °C / 1 h caused a decrease in the proof stress of PBF-LB/M/316L. However, it still remained higher than the one of HR/316L by a factor of 1.5x. The deformation characteristics were hardly affected. Regarding the creep behavior, this latter heat treatment at 900 °C / 1 h caused longer secondary and tertiary creep stages, and the creep strain increased significantly. The fracture characteristics generally differed, which happened not only but especially with increasing test temperature, where intergranular cracking often took place in PBF-LB/M/316L. The cellular structure is considered the main factor contributing to the different mechanical properties compared to the HR/316L variant. In addition, grain morphology, stacking fault energy, and nitrogen content might play a role. KW - AGIL KW - Additive Fertigung KW - Laser-Pulverbettschmelzen KW - Mikrostrukturentwicklung KW - 316L KW - LCF KW - Kriechen KW - Additive Manufacturing KW - Microstructure KW - Mechanical Properties KW - Mechanische Eigenschaften PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-597143 DO - https://doi.org/10.14279/depositonce-19828 SP - 1 EP - 190 CY - Berlin AN - OPUS4-59714 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zocca, Andrea A1 - Müller, Bernd R. A1 - Laquai, René A1 - Kupsch, Andreas A1 - Wieder, Frank A1 - Benemann, Sigrid A1 - Wilbig, Janka A1 - Günster, Jens A1 - Bruno, Giovanni T1 - Microstructural characterization of AP40 apatite-wollastonite glass-ceramic JF - Ceramics international N2 - The microstructure of an apatite-wollastonite (code name AP40) glass-ceramic is analyzed in this study by combining 2D microscopy, phase analysis, X-ray absorption and synchrotron X-ray refraction computed tomography (XCT and SXRCT, respectively). It is shown that this combination provides a useful toolbox to characterize the global microstructure in a wide scale range, from sub-micrometer to millimeter. The material displays a complex microstructure comprising a glassy matrix with embedded fluorapatite and wollastonite small crystals. In this matrix, large (up to 200 μm) spike-shaped structures are distributed. Such microstructural features are oriented around a central sphere, thereby forming a structure resembling a sea urchin. A unique feature of SXRCT, in contrast to XCT, is that internal interfaces are visualized; this allows one to show the 3D distribution of these urchins with exceptionally good contrast. Furthermore, it is revealed that the spike-shaped structures are not single crystals, but rather composed of sub-micrometric crystals, which are identified as fluorapatite and diopside phases by SEM-EDX analysis. KW - Glass-ceramic KW - X-ray refraction KW - Computed tomography KW - Microstructure PY - 2023 DO - https://doi.org/10.1016/j.ceramint.2022.12.130 SN - 0272-8842 VL - 49 IS - 8 SP - 12672 EP - 12679 PB - Elsevier Science CY - Amsterdam AN - OPUS4-57452 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Hartrott, P. A1 - Metzger, M. A1 - Rockenhäuser, Christian A1 - Skrotzki, Birgit T1 - Lifetime assessment of aging materials JF - MTZ Worldwide N2 - Materials subjected to high-temperature service conditions will change their microstructure with time. Associated with this aging process is a change of mechanical properties as well as a change of damage mechanisms. Within the scope of the FVV project Aging and Lifetime, Fraunhofer IWM in Freiburg and BAM in Berlin (both Germany) experimentally characterized the widespread high-temperature aluminum alloy EN AW-2618A in different overaging states. Based on the experimental findings, models for numerical lifetime assessment with the finite-element method were implemented. KW - Aluminum alloy KW - Aging KW - Microstructure KW - Lifetime prediction KW - Damage PY - 2018 DO - https://doi.org/10.1007/s38313-018-0084-7 SN - 2192-9114 VL - 79 IS - 10 SP - 64 EP - 68 PB - Springer AN - OPUS4-46065 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion JF - Advanced Engineering Materials N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. KW - Creep KW - Computed Tomography KW - PBF-LB/M/316L KW - Laser Powder Bed Fusion KW - Microstructure KW - AISI 316L KW - Additive Manufacturing PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-574127 DO - https://doi.org/10.1002/adem.202201581 SP - 1 EP - 9 PB - Wiley-VCH GmbH CY - Weinheim AN - OPUS4-57412 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ulbricht, Alexander A1 - Avila Calderon, Luis A1 - Sommer, Konstantin A1 - Mohr, Gunther A1 - Evans, Alexander A1 - Skrotzki, Birgit A1 - Bruno, Giovanni T1 - Evolution of Creep Damage of 316L Produced by Laser Powder Bed Fusion N2 - The damage mechanisms of metallic components produced by process laser powder bed fusion differ significantly from those typically observed in conventionally manufactured variants of the same alloy. This is due to the unique microstructures of additively manufactured materials. Herein, the focus is on the study of the evolution of creep damage in stainless steel 316L specimens produced by laser powder bed fusion. X-ray computed tomography is used to unravel the influence of the process-specific microstructure from the influence of the initial void distribution on creep damage mechanisms. The void distribution of two specimens tested at 600 °C and 650 °C is analyzed before a creep test, after an interruption, and after fracture. The results indicate that the formation of damage is not connected to the initial void distribution. Instead, damage accumulation at grain boundaries resulting from intergranular cracking is observed. T2 - Annual International Solid Freeform Fabrication Symposium CY - Austin, TX, USA DA - 14.08.2023 KW - AISI 316L KW - Additive Manufacturing KW - Computed Tomography KW - Creep KW - Laser Powder Bed Fusion KW - Microstructure KW - PBF-LB/M/316L PY - 2023 AN - OPUS4-58285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Darvishi Kamachali, Reza A1 - Roik, J. A1 - Agudo Jácome, Leonardo T1 - The AlMo0.5NbTa0.5TiZr refractory high entropy superalloy: Experimental findings and comparison with calculations using the CALPHAD method JF - Materials and design N2 - Detailed microstructural characterization of the AlMo0.5NbTa0.5TiZr refractory high entropy superalloy in the as-cast state is reported for first time and compared with the state annealed at 1400 oC for 24 h. The former shows a dendritic structure, with a mixture of A2/B2 phases < 20 nm in both the dendritic and interdendritic regions. A mostly amorphous phase, rich in Al and Zr, is found within the interdendritic region. The annealed state reproduced the combination of A2/B2/Al-Zr-rich phases reported previously. Calculations from two relevant ThermoCalc databases were compared with the experimental results. Equilibrium calculations were compared with results for the annealed alloy, whereas solidification paths calculated using Scheil-Gulliver model were used for comparison with the as-cast alloy. A previously hypothesized spinodal decomposition during cooling as the mechanism responsible for the patterned A2/B2 microstructure is confirmed via the CALPHAD calculations, pointing to its use as an efficient design tool for such alloys. Finally, the comparison between the experimental and computational findings allowed better understanding the solidification path and equilibrium stability of this alloy, giving a base to make better decisions on the field of new refractory superalloy design. KW - CALPHAD database analysis KW - Refractory superalloys KW - Chemically complex alloy KW - Characterization KW - Microstructure PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-545906 DO - https://doi.org/10.1016/j.matdes.2022.110593 SN - 1873-4197 VL - 217 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-54590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -