TY - JOUR A1 - Reveron, H. A1 - Serrano-Munoz, Itziar A1 - Kupsch, Andreas A1 - Müller, B.R. A1 - Chevalier, J. A1 - Bruno, Giovanni T1 - Transformation-induced plasticity in zirconia during tensile loading: A combined microscopy and synchrotron X-ray refraction study JF - Materials Letters N2 - The stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation can provide a certain degree of plasticity to Ceria-stabilized (Ce-TZP) zirconia-based composites. Characterizing and monitoring this phase transition on a millimeter-size range, within the bulk and in-situ remains a challenge. In this work, the mechanical behavior of Ce-TZP based composite was studied in tension, combining microscopy and synchrotron Xray refraction techniques. In contrast with microscopy methods, which only provide surface information, X-ray refraction radiography (SXRR) allowed the visualization of all the transformation bands, over the entire length and thickness of tested specimens, opening up new avenues for in-situ stress-induced t-m transformation studies. KW - Zirconia KW - Ceria KW - Composite KW - Phase transformation KW - Plasticity KW - Synchrotron X-ray refraction PY - 2024 DO - https://doi.org/10.1016/j.matlet.2024.136445 SN - 0167-577X SN - 1873-4979 VL - 366 SP - 1 EP - 4 PB - Elsevier Ltd. CY - Amsterdam AN - OPUS4-59977 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liens, A. A1 - Reveron, H. A1 - Douillard, T. A1 - Blanchard, N. A1 - Lughi, V. A1 - Sergo, V. A1 - Laquai, René A1 - Müller, Bernd R. A1 - Bruno, Giovanni A1 - Schomer, S. A1 - Fürderer, T. A1 - Adolfsson, E. A1 - Courtois, N. A1 - Swain, M. A1 - Chevalier, J. T1 - Phase transformation induces plasticity with negligible damage in ceria-stabilized zirconia-based ceramics JF - Acta Materialia N2 - Ceramics and their composites are in general brittle materials because they are predominantly made up of ionic and covalent bonds that avoid dislocation motion at room temperature. However, a remarkable ductile behavior has been observed on newly developed 11 mol.% ceria-stabilized zirconia (11Ce-TZP) composite containing fine alumina (8 vol.% Al2O3) and elongated strontium hexa-aluminate (8 vol.% SrAl12O19) grains. The as-synthesized composite also has shown full resistance to Low Temperature Degradation (LTD), relatively high strength and exceptionally high Weibull modulus, allowing its use in a broader range of biomedical applications. In this study, to deepen the understanding of plastic deformation in Ce-TZP based composites that could soon be used for manufacturing dental implants, different mechanical tests were applied on the material, followed by complete microstructural characterization. Distinct from pure Ce-TZP material or other zirconia-based ceramics developed in the past, the material here studied can be permanently strained without affecting the Young modulus, indicating that the ductile response of tested samples cannot be associated to damage occurrence. This ductility is related to the stress-induced tetragonal to monoclinic (t-m) zirconia phase transformation, analogue to Transformation-Induced Plasticity (TRIP) steels, where retained austenite is transformed to martensite. The aim of this study is to corroborate if the observed plasticity can be associated exclusively to the zirconia t-m phase transformation, or also to microcraking induced by the transformation. The t-m transformed-zones produced after bending and biaxial tests were examined by X-ray refraction and SEM/TEM coupled with Raman. The results revealed that the observed elastic-plastic behavior occurs without extensive microcracking, confirming a purely elastic-plastic behavior driven by the phase transformation (absence of damage). KW - Zirconia KW - Ceria KW - Ceramic matrix composite KW - Plasticity KW - Phase transformation KW - X-Ray Refraction PY - 2020 UR - http://www.sciencedirect.com/science/article/pii/S1359645419307177 DO - https://doi.org/10.1016/j.actamat.2019.10.046 SN - 1359-6454 VL - 183 SP - 261 EP - 273 PB - Elsevier Ltd. AN - OPUS4-49740 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -