TY - JOUR A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, Hartmut A1 - Zerbst, Uwe T1 - Burst speed assessment of aero-engine turbine disk based on failure assessment diagram and global stability criterion JF - Engineering Fracture Mechanics N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present two alternative burst speed assessment methods under development based on the Failure Assessment Diagram (FAD) and a global stability criterion, respectively. In the scope of the fracture mechanics assessment, the failure modes hoop-burst and rim-peeling are investigated with semicircular surface cracks modelled at the critical regions on the turbine disk. The comparison of the predicted critical rotational speed shows good agreement between the assessment methods. KW - Global stability criterion KW - Fracture mechanics KW - Burst KW - Turbine disk PY - 2023 DO - https://doi.org/10.1016/j.engfracmech.2022.109005 SN - 0013-7944 VL - 277 SP - 1 EP - 15 PB - Elsevier Ltd. AN - OPUS4-56736 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, Michael A1 - Fedelich, Bernard A1 - Schlums, H. A1 - Zerbst, Uwe T1 - Burst Behaviours Of Aero Engine Turbine Disk At Overspeed Conditions T2 - 43rd International Conference on Material Mechanics N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of 𝐽-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest 𝐽 -integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. In addition, probabilistic aspects are also considered in the calculations. T2 - 43rd Int. Conference on Materials Mechanics, June 5-10, 2022, Greece CY - Sani, Chalkidiki, Greece DA - 05.06.2022 KW - Structural integrity KW - Turbine disk KW - Fracture mechanics KW - Overspeed PY - 2022 SP - 1 EP - 13 AN - OPUS4-57279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Schurig, M. A1 - Schlums, H. A1 - Zerbst, Uwe T1 - Fracture mechanics-based structural integrity assessment of aeroengine turbine disks under overspeed conditions T2 - Proceedings of ASME Turbo Expo 2022 N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on productionsimilar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. In particular, the rimpeeling failure mode is considered as case study. A semi-circular surface crack is modelled at the most stressed region at the diaphragm of a turbine disk, with the crack plane perpendicular to the radial direction. The crack is therefore subjected to a biaxial stress state and grows under increasing rotational speed until it triggers the rim-peeling failure. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of � -integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest � -integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. Probabilistic aspects are also considered in the calculations. T2 - ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition (GT2022) CY - Rotterdam, The Netherlands DA - 13.06.2022 KW - Fracture mechanics KW - Burst KW - Turbine disk PY - 2022 SP - 1 EP - 7 PB - ASME AN - OPUS4-55903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro T1 - Burst behaviours of aero-engine turbine disk at overspeed conditions N2 - This presentation focuses on the basic ideas and current status of the development of an arithmetical method to predict the failure rotational speed of turbine disks. The certification specification requires that a gas turbine aero-engine must hold 5 minutes at overspeed conditions without critical failure. Therefore, instead of experimental proof from spin-tests using test-disks similar to engine components, it is considered to use simple specimen with similar test conditions compared to real overspeed scenarios. These test conditions, or stress fields are determined using arithmetical method, e.g. finite element method, with consideration of fracture mechanics under quasi-static conditions with a given rotational speed. Failure modes like hoop burst and rim peeling are considered during determination of stress fields. Various crack-tip parameters are used to explore the similarity of stress field between simple specimen and real overspeed scenarios. Additionally, probabilistic aspects and the implementation of a global stability criterion for overspeed analysis are also considered. T2 - 43rd Materials Mechanics Seminar CY - Sani, Chalkidiki, Greece DA - 06.06.2022 KW - Structural integrity KW - Fracture mechanics KW - Turbine disk KW - Overspeed PY - 2022 AN - OPUS4-55081 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro T1 - Fracture mechanics-based structural integrity assessment of aero-engine turbine disks under overspeed conditions N2 - Aero-engine turbine disks are safety-relevant components which are operated under high thermal and mechanical stress conditions. The actual part qualification and certification procedures make use of spin-tests conducted on production-similar disks. While these tests provide, on the one hand, a reliable definition of the critical conditions for real components, on the other hand they represent a relevant cost item for engine manufacturers. The aim of this work is to present part of a fracture mechanics-based procedure under development which aims at replacing the tests on production-similar disks with lab tests on fracture mechanics specimens. In particular, the rim-peeling failure mode is considered as case study. A semi-circular surface crack is modelled at the most stressed region at the diaphragm of a turbine disk, with the crack plane perpendicular to the radial direction. The crack is therefore subjected to a biaxial stress state and grows under increasing rotational speed until it triggers the rim-peeling failure. The finite element simulation of the cracked disk considers the real thermal and mechanical loading conditions. In order to design a lab representative specimen, beside the crack driving force, expressed in terms of J-integral, also the constraint to plastic deformation e.g., stress triaxiality, at the crack-tip must be similar for the same crack in the specimen and in the disk. This has been achieved and as expected, both the highest J-integral and constraint factor are calculated at the same location along the crack front for both disk and specimen. The results of the structural integrity assessment in the form of a Failure Assessment Diagram (FAD) show good agreement between designed specimen and disk both in terms of expected failure mode and value of the critical speed. Probabilistic aspects are also considered in the calculations. T2 - Turbo Expo 2022 CY - Rotterdam, Netherlands DA - 13.06.2022 KW - Structural integrity KW - Fracture mechanics KW - Turbine disk KW - Overspeed PY - 2022 AN - OPUS4-55082 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zhu, Jiangchao A1 - Madia, Mauro A1 - Zerbst, Uwe A1 - Schurig, M. A1 - Schlums, H. A1 - Conrad, F. A1 - Kontermann, C. A1 - Oechsner, M. T1 - Kennwertermittlung für die Bewertung der Integrität einer Turbinenscheibe bei Überdrehzahl N2 - Turbinenscheiben sind thermisch und mechanisch hochbeanspruchte, sicherheitsrelevante Komponenten in Gasturbinen. Ihre Integrität wird in Bauteiltests unter Überdrehzahlbedingungen nachgewiesen. Kontext des Aufsatzes ist die Erarbeitung einer zusätzlichen Bewertungsebene auf der Grundlage von Versuchen unter monotoner Beanspruchung, die die Beanspruchung im Bauteil realistisch wiedergeben soll. Dazu werden zwei Typen von bruchmechanischen Proben anwendungsnah ausgelegt und aus einer Turbinenscheibe ausgeschnitten: Der erste Typ ist eine biaxiale Probe, die die Beanspruchung und den Dehnungsbehinderungszustand am Diaphragm der Turbinenscheibe abbildet, die zweite eine bruchmechanische Probe, die die einachsige Beanspruchung und den Dehnungsbehinderungszustand am Bore der Turbinenscheibe wiedergibt. Im Rahmen eines Schadentoleranzansatzkonzepts ist anschließend jeweils ein halbelliptischer Riss an den genannten Stellen der Turbinenscheibe zu betrachten. Mittels numerischer Berechnungen wird ein kritischer Punkt auf der Rissfront des Risses am Diaphragm bestimmt, dort wo die höchste Rissspitzenbelastung (J-Integral) auftritt. Auf der Basis der Rissspitzenbelastung, des Dehnungsbehinderungszustands und des entsprechenden Spannungsverhältnisses an diesem kritischen Punkt wird eine Kreuzprobe mit einem Durchriss konzipiert, die diese Verhältnisse im Bauteil widerspiegelt. Die Versuche werden unter der Temperatur am Diaphragm der Turbinenscheibe durchgeführt. Die J-R-Kurve und die plastische Kollapsgrenze werden bestimmt. Auch die einachsigen Versuche werden unter der Temperatur am Bore der Turbinenscheibe durchgeführt. Die Zugprobe enthält halbelliptische Oberflächenrisse. Ähnlich wie bei der Auslegung der Kreuzproben werden die Rissspitzenbelastung, der Dehnungsbehinderungszustand und das Spannungsverhältnis vergleichbar mit der Turbinenscheibe eingestellt. Die J-R-Kurve und die plastische Kollapsgrenze werden bestimmt. Mit den Versuchsergebnissen werden die kritischen Lasten für verschiedene Versagensmechanismen (instabiles Risswachstum, plastischer Kollaps) der bruchmechanischen Proben ermittelt, die der kritischen Überdrehzahl der Turbinenscheibe entsprechen. T2 - 40. Vortrags- und Diskussionstagung Werkstoffprüfung 2022 CY - Dresden, Germany DA - 27.10.2022 KW - Turbine disk KW - Fracture mechanics KW - Biaxial test KW - Burst PY - 2022 AN - OPUS4-56148 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. A1 - Beier, T. T1 - Fatigue strength and fracture mechanics - A general perspective JF - Engineering fracture mechanics N2 - Common fracture mechanics based fatigue considerations are usually limited to the residual lifetime determination of so-called long cracks. The extension of this concept to the total lifetime, as in the S-N curve approach, requires an adequate description of short crack propagation which cannot be based on the Delta K concept, and it must consider the crack closure phenomenon as well as its gradual build-up at the short crack stage. Further, it has to provide a meaningful definition of initial crack dimensions and a solution for the multiple crack problem at stress levels higher than the fatigue limit as it is specific for some configurations such as weldments. This paper aims at a discussion of all these points and offers possible solutions which are illustrated by examples taken from the German IBESS project on fracture mechanics based determination of the fatigue strength of weldments, the results of which will be discussed in more detail in this Special issue. KW - Fatigue strength KW - Endurance limit KW - Fracture mechanics KW - Short crack propagation KW - Multiple cracking KW - Weldments PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.04.030 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 2 EP - 23 PB - Elsevier AN - OPUS4-46862 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Applying fracture mechanics to fatigue strength determination - some basic considerations JF - International Journal of Fatigue N2 - A discussion is provided on demands that must be met in order to apply fracture mechanics to the determination of overall fatigue lifetime and strength, i.e., S-N curves and fatigue limits. These comprise the determination of the cyclic crack driving force for all stages of fatigue crack propagation, in particular for the short crack stage where the crack driving force has to be determined for elastic-plastic deformation and the gradual build-up of the crack closure phenomenon. Special emphasis is put on a fatigue damage relevant specification of the initial crack size. Different approaches in the literature are discussed. Another important aspect is the adequate treatment of multiple crack propagation. Finally, the discussion is illustrated by an example of a butt weld made of a medium strength steel. KW - Multiple cracks KW - Fatigue strength KW - Fracture mechanics KW - Fatigue crack propagation KW - Initial crack size PY - 2019 DO - https://doi.org/10.1016/j.ijfatigue.2019.05.009 SN - 0142-1123 VL - 126 SP - 188 EP - 201 PB - Elsevier Ltd. AN - OPUS4-48091 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Fatigue strength and fracture mechanics JF - Procedia Structural Integrity N2 - If fracture mechanics shall be applied to the total lifetime respectively the fatigue limit of components (within the meaning of the S-N curve approach) it has to address four challenges: (a) It has to adequately describe so-called short crack propagation, which cannot be based on the common long crack concepts for principle reasons. Since the crack size is in the order of the plastic zone size, the modelling of short crack propagation cannot be based on the common linear elastic Delta K concept. Instead, an elastic-plastic parameter such as the cyclic J integral has to be applied. A second point is that the crack closure concept has to be modified in that the crack opening stress is not a constant, crack size- independent parameter but shows a transient behaviour with increasing short crack size. (b) It has to provide a meaningful definition of the initial crack dimensions as the starting point for an S-N curve relevant (residual) lifetime analysis. This can be based either on the (statistical) size of material defects which can be treated as cracks or by the size of the crack which would arrest subsequent to early crack propagation, whatever is larger. (c) It has to cope with the problem of multiple cracks for load levels higher than the fatigue limit such as it occurs in many applications in the absence of very large initial defects. (d) This requires consequent statistical treatment taking into account variations in the local geometry of the area where crack initiation has to be expected as well as the scatter in the initial crack size and in the material data used for the analyses. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 DO - https://doi.org/10.1016/j.prostr.2017.07.065 SN - 2452-3216 VL - 5 SP - 745 EP - 752 AN - OPUS4-42545 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Vormwald, M. T1 - Fatigue strength and fracture mechanics N2 - If fracture mechanics shall be applied to the total lifetime respectively the fatigue limit of components (within the meaning of the S-N curve approach) it has to address four challenges: (a) It has to adequately describe so-called short crack propagation, which cannot be based on the common long crack concepts for principle reasons. Since the crack size is in the order of the plastic zone size, the modelling of short crack propagation cannot be based on the common linear elastic Delta K concept. Instead, an elastic-plastic parameter such as the cyclic J integral has to be applied. A second point is that the crack closure concept has to be modified in that the crack opening stress is not a constant, crack size- independent parameter but shows a transient behaviour with increasing short crack size. (b) It has to provide a meaningful definition of the initial crack dimensions as the starting point for an S-N curve relevant (residual) lifetime analysis. This can be based either on the (statistical) size of material defects which can be treated as cracks or by the size of the crack which would arrest subsequent to early crack propagation, whatever is larger. (c) It has to cope with the problem of multiple cracks for load levels higher than the fatigue limit such as it occurs in many applications in the absence of very large initial defects. (d) This requires consequent statistical treatment taking into account variations in the local geometry of the area where crack initiation has to be expected as well as the scatter in the initial crack size and in the material data used for the analyses. T2 - 2nd International Conference on Structural Integrity CY - Funchal, Madeira, Portugal DA - 04.09.2017 KW - Fatigue strength KW - Fracture mechanics KW - Initial crack size KW - Short crack propagation KW - Multiple crack propagation PY - 2017 AN - OPUS4-42546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -