TY - CONF A1 - Dieck, S. A1 - Ecke, M. A1 - Harnisch, K. A1 - Rosemann, Paul A1 - Halle, T. T1 - Gefüge- und Phasenanalyse biokompatibler Co-Cr-Mo-Legierung N2 - Co-Cr-Mo-Werkstoffe sind im Bereich der Biomaterialien weit verbreitet und werden für Endoprothesen eingesetzt. Deren Lebensdauer ist jedoch durch tribologische und korrosive Dauerbelastung begrenzt. Um die Anzahl operativer Eingriffe am Patienten zu minimieren, ist es notwendig den Werkstoff hinsichtlich Verschleißbeständigkeit und Korrosionsbeständigkeit zu optimieren. Hierfür ist ein umfassendes Verständnis der legierungsabhängigen Phasenbildung und –entwicklung während Herstellung und Wärmebehandlung notwendig. An einer speziellen Co-Cr-Mo Legierung werden verschiedene Untersuchungen zur Gefügecharakterisierung durchgeführt. Dabei werden die auftretenden Phasen thermodynamisch berechnet, mittels XRD nachgewiesen, die Phasenmorphologie durch EBSD analysiert, die Elementverteilung durch EDX-Analyse ermittelt und die Ergebnisse durch Farbätzen verifiziert. Das Ziel der Untersuchungen ist es, Optimierungspotentiale bei Herstellung und Wärmebehandlung zu identifizieren. T2 - Werkstoffwoche 2017 CY - Dresden, Germany DA - 27.09.2017 DA - 29.09.2017 KW - CoCrMo KW - Gefüge KW - ThermoCalc KW - EBSD KW - Farbätzen PY - 2017 AN - OPUS4-42832 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kauss, N. A1 - Rosemann, Paul A1 - Halle, T. T1 - Age-hardening behaviour, microstructure and corrosion resistance of the copper alloyed stainless steel 1.4542 N2 - The copper alloyed stainless steel 1.4542 (X5CrNiCuNb16-4) is used in different areas due to its good mechanical properties and corrosion resistance. Strength and corrosion re-sistance can be adjusted by the heat treatment, which is of importance for the application of this alloy. The mechanical properties (strength and hardness) are attributed to the dispersive precipitation of the copper rich ε–Phase. The additional precipitation of chromium carbides can reduce the corrosion resistance. Different ageing states were produced to investigate the precipitation behaviour with various methods. Furthermore, the influence of cold-rolling on the precipitation behaviour was studied in comparison to a solution annealed state without deformation. The microstructure was studied by SEM and the variations of hardness and magnetic proportion were characterised. The electrochemical potentiodynamic reactivation (EPR) was used to determine the corrosion resistance and detect chromium depletion in all heat-treated states. The results show that a work hardening accelerates the precipitation rate, while ageing at 600 °C reduces the corrosion re-sistance due to chromium depletion. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - Stainless steel KW - Corrosion resistance KW - EPR KW - Corrosion testing KW - Heat treatment KW - ThermoCalc KW - REM KW - Martensitic stainless steels PY - 2018 AN - OPUS4-45955 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, C. A1 - Rosemann, Paul T1 - Wärmebehandlung und Korrosionsbeständigkeit druckaufgestickter nichtrostender Stähle N2 - Gefüge und Eigenschaften nichtrostender Stählen werden maßgeblich von ihrer chemischen Zusammensetzung und der Wärmebehandlung bestimmt. Eine spezielle Werkstoffgruppe der austenitischen nichtrostenden Stähle enthält ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, um das austenitische Gefüge ohne das Legieren mit Nickel sicherzustellen. Die herausragenden mechanischen Eigenschaften dieser Werkstoffe (Rm von 900 2.000 MPa, A5 > 50 %, Av > 350 J) werden nach der Wärmebehandlung (Lösungsglühen und Abschrecken) durch gezielte Kaltverfestigung eingestellt. Das Lösungsglühen beseitigt vorhandene Kaltverfestigung und unerwünschte Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und bewirkt die homogene Verteilung der Legierungselemente (insbesondere Stickstoff) im Austenit. Dies ist zur Erzielung der Korrosionsbeständigkeit von entscheidender Bedeutung. Im Poster werden systematische Untersuchungen zur Korrosionsbeständigkeit dieser vielversprechenden Werkstoffklasse vorgestellt und die Interaktion zwischen Legierungszusammensetzung, Wärmebehandlung, Gefüge und Korrosionsbeständigkeit dargestellt. Die vom Gefüge bedingten Veränderungen der Korrosionsbeständigkeit werden durch verschiedene Methoden ermittelt und interpretiert. T2 - GfKORR-Jahrestagung 2017 CY - Frankfurt a. M., Germany DA - 07.11.2017 KW - Wärmebehandlung KW - Korrosion KW - Nichtrostender Stahl KW - EPR KW - KorroPad KW - Sensibilisierung KW - Stickstoff KW - ThermoCalc PY - 2017 AN - OPUS4-42833 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. T1 - Wärmebehandlung und Korrosionsbeständigkeit druckaufgestickter nichtrostender Stähle N2 - Gefüge und Eigenschaften nichtrostender Stählen werden maßgeblich von ihrer chemischen Zusammensetzung und der Wärmebehandlung bestimmt. Eine spezielle Werkstoffgruppe der austenitischen nichtrostenden Stähle enthält ca. 19 Gew.-% Mangan und 0,8 Gew.-% Stickstoff, um das austenitische Gefüge ohne das Legieren mit Nickel sicherzustellen. Die herausragenden mechanischen Eigenschaften dieser Werkstoffe (Rm von 900 2.000 MPa, A5 > 50 %, Av > 350 J) werden nach der Wärmebehandlung (Lösungsglühen und Abschrecken) durch gezielte Kaltverfestigung eingestellt. Das Lösungsglühen beseitigt vorhandene Kaltverfestigung und unerwünschte Ausscheidungsphasen (Cr2N, M23C6 und Sigma-Phase) und bewirkt die homogene Verteilung der Legierungselemente (insbesondere Stickstoff) im Austenit. Dies ist zur Erzielung der Korrosionsbeständigkeit von entscheidender Bedeutung. Im Poster werden systematische Untersuchungen zur Korrosionsbeständigkeit dieser vielversprechenden Werkstoffklasse vorgestellt und die Interaktion zwischen Legierungszusammensetzung, Wärmebehandlung, Gefüge und Korrosionsbeständigkeit dargestellt. Insbesondere der Einfluss von Warmauslagerungsversuchen nach dem Abschrecken wird dabei charakterisiert. Die vom Gefüge bedingten Veränderungen der Korrosionsbeständigkeit werden durch verschiedene Methoden (EPR, KorroPad, Lochkorrosionspotentiale) ermittelt und interpretiert. T2 - Werkstoffwoche 2017 CY - Dresden, Germany DA - 27.09.2017 KW - Wärmebehandlung KW - Korrosion KW - Nichtrostender Stahl KW - EPR KW - KorroPad KW - Sensibilisierung KW - Stickstoff KW - ThermoCalc PY - 2017 AN - OPUS4-42831 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rosemann, Paul A1 - Müller, C. A1 - Roßberg, S. A1 - Pensel, P. A1 - Halle, T. A1 - Burkert, A. T1 - Precipitation behavior and corrosion resistance of nickel-free, high-nitrogen austenitic stainless steels N2 - Nickel-free, nitrogen alloyed austenitic stainless-steels, with about 19 wt.-% Mn and 0,8 wt. % N, are an interesting alternative to classic CrNi austenitic stainless steels due to their superior mechanical properties (Rm > 900 MPa, A5 > 50 %, Av > 350 J) in the solution annealed condition. The formation of chromium-rich nitrides during suboptimal heat treatment, processing or application leads to an inhomogeneous distribution of alloying elements in the microstructure, which reduces the corrosion resistance. Consequently, an accurate knowledge of the sensitization behavior is indispensable for the use of nickel-free, high-nitrogen austenitic stainless steels. The relationship between artificial aging, phase formation and corrosion resistance was investigated on the alloys X8CrMnN18-19 (1.3815) and X8CrMnMoN18-19-2 (1.4456), both alloyed with 0,8 wt.-% Nitrogen, in the present work. The microstructural evolution was studied by LM and SEM while the corrosion resistance was characterized with the electrochemical potentiodynamic reactivation (EPR) and the KorroPad indicator-test. Both alloys showed increased corrosion susceptibility within critical aging parameters. Finally, a sensitization diagram was described successfully for both alloys showing the positive effect of molybdenum. T2 - EUROCORR 2018 CY - Krakow, Poland DA - 09.09.2018 KW - Corrosion KW - KorroPad KW - Stainless steel KW - Corrosion resistance KW - Heat treatment KW - ThermoCalc KW - Pitting corrosion KW - Nitrogen PY - 2018 AN - OPUS4-45954 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -