TY - JOUR A1 - Gook, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Hybrid laser arc welding of high grade X80 and X120 pipeline steels N2 - The aim of the present work was to investigate the possibilities of hybrid laser arc welding regarding reliable production of longitudinal welds of high strength pipe steels X80 and X120 and to evaluate achievable mechanical properties of laser hybrid welds. The study focused on weld toughness examination in low temperature range up to -60 °C. SЮТЭКЛХО ПТХХОЫ ЦКЭОЫТКХЬ were identified in the context of this task. It could be shown that metal cored electrodes guaranteed sufficient Charpy impact toughness at low temperature for both investigated materials. Modern arc welding technologies such as modified pulsed spray arc were used to promote deeper Penetration of the filler material into the narrow laser welding gap. Edge preparation with a 14 mm deep root face was considered as optimum, because no penetration of the filler material could be detected beyond this depth limit and therefore any metallurgical influences on the weld metal properties through the welding wire could be excluded. KW - High strength steel KW - Longitudinal weld KW - Modified spray arc KW - Pipeline KW - Hybrid laser arc welding PY - 2017 SN - 2499-9733 SN - 2305-414Х VL - 1 IS - 22 SP - 21 EP - 35 AN - OPUS4-44343 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marko, A. A1 - Graf, B. A1 - Gook, S. A1 - Rethmeier, Michael T1 - Application of D-optimum experimental designs in consideration of restrictions for laser metal deposition N2 - The process of laser metal deposition can be applied in many ways. Mostly, it is relevant to coating, for repair welding and for additive manufacturing. To increase the effectiveness and the productiveness, a good process understanding is necessary. Statistical test planning is effectual and often used for this purpose. For financial and temporal reasons, a restriction of the test space is reasonable. In this case, it is recommended to use a D-optimal experimental design which is practically applied to extend existing test plans or if process Limits are known. This paper investigates the applicability of a D-optimum experimental design for the laser metal deposition. The results are compared to the current results of a full factorial test plan. Known restrictions are used for the limitation of the test space. Ti6Al4 is utilized as Substrate material and powder. Comparable results of the D-optimal experimental design and of the full factorial test plan can be demonstrated. However, 80 % of time can be saved by the experimental procedure. For this reason, the application of D-optimal experimental design for laser metal deposition is recommend. KW - Design of experiments KW - Repair welding KW - Additive manufacturing KW - Cladding parameter KW - Laser metal deposition KW - Laser cladding PY - 2017 SN - 2499-9733 SN - 2305-414Х VL - 3 IS - 24 SP - 46 EP - 60 AN - OPUS4-44344 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -