TY - JOUR A1 - Karkhin, Victor A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during laser welding of thin plates T1 - Моделирование процесса кристаллизации при лазерной сварке пластин малой толщины N2 - It is proposed to model the experimentally observed weld pool boundary with superellipses (Lamé curves) and to find the unknown parameters of the curves using optimization methods. It has been shown experimentally that during laser welding of austenitic stainless steel with a thickness of 2 mm at a speed of 20 mm/s, the rear weld pool part has a shape close to triangular which can be accurately approximated by a superellipse. Analytical dependences of the trajectory and growth rate of the crystal and its cross-sectional area on the geometry of the rear weld pool part are obtained. KW - Laser beam welding KW - Plane crystalization KW - Mathematical modeling KW - Superellipse KW - Thin steel plates PY - 2023 U6 - https://doi.org/10.34641/SP.2023.1061.4.033 VL - 4 SP - 28 EP - 33 AN - OPUS4-59649 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Artinov, Antoni A1 - Karkhin, Victor A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Simulation of solidification during keyhole laser welding of thick plates T1 - Моделирование процесса кристаллизациипри лазерной сварке со сквозным проплавлением пластин большой толщины N2 - A method of solving the thermo-fluid dynamics problem is presented, enabling the prediction of the shape and dimensions of the weld pool during keyhole laser welding of thick plates. It is shown that the rear weld pool boundary can be satisfactorily approximated by a set of superellipses (Lamé curves). The presence of a convex rear weld pool boundary in the mid-plane has been observed experimentally and reproduced numerically. It was shown that in this zone the concentration of liquating impurities increases and the local solidification temperature decreases, contributing to the susceptibility to hot cracking. KW - Laser beam welding KW - Three-dimensional crystallization KW - Mathematical modeling KW - Superellipse KW - Thick steel plates PY - 2024 U6 - https://doi.org/10.34641/SP.2023.1062.5.041 VL - 5 SP - 31 EP - 36 AN - OPUS4-59639 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -