TY - CONF A1 - Müller, Urs T1 - Lime mortar for the conservation of the Timur Shah Mausoleum T2 - Standort H23/R012, BAM CY - Berlin, Germany DA - 02.05.2006 PY - 2006 AN - OPUS4-12486 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Goering, Harald A1 - Klobes, Peter A1 - Tschritter, H. T1 - Investigation on the structure of silica/polyurethane nanocomposites N2 - Inorganic-organic nanocomposites are synthesised from polyethylene glycol with an average molar mass of 600 g/mol containing colloidal silica (silicic acid) and diphenyl methane diisocyanate as compact and foamed materials according to the European patent EP1414880. Beside the macroscopic properties, the pore structure and the structure of the polymer matrix of the silica/polyurethane nanocomposites with varying silica contents were studied. T2 - 8th International Symposium on the Characterisation of Porous Solids CY - Edinburgh, Scotland DA - 11.06.2008 PY - 2008 AN - OPUS4-16445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klobes, Peter A1 - Rübner, Katrin A1 - Prinz, Carsten A1 - Hempel, S. T1 - Investigation on the microstructure of ultra high performance concrete N2 - Ultra-high performance concrete (UHPC) is characterised by compressive strengths above 150 MPa and an outstanding durability. These properties are achieved by optimisation of the mixture composition, the mixing procedure as well as the curing conditions of the concrete. Heat curing as well as the use of vacuum mixers may contribute to the high strength. The very high brittleness of UHPC can be compensated by the addition of steel or polymer fibres. UHPC is produced using a very low water/cement ratio of 0.25 or smaller in combination with adding of polycarboxylate ether based superplasticisers. Furthermore, finest cements with contents of 500 kg/m³, defined selections of coarse and fine aggregates with a maximum grain size between 0.5 and 8 mm and fine pozzolanic (silica fume, fly ash) and inert additives (quartz filler) are used. In doing so, the aim is to obtain a very high packing density of the cement paste matrix and the aggregate/paste interface while a very homogeneous microstructure with a high calcium silicate hydrate (CSH) portion is formed. In the case of optimal mixing and curing conditions, UHPC contains almost no pores and microcracks. Therefore, studies of porosity and pore structure are very important to characterise UHPC materials in connection with the mixture optimisation. Here, the experimental results for UHPC are presented in comparison with those of high-strength concrete (100 MPa) and normal-strength concrete (35 MPa), respectively. T2 - 8th International Symposium on the characterisation of Porous Solids CY - Edinburgh, Scotland DA - 11.06.2008 PY - 2008 AN - OPUS4-16396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rübner, Katrin A1 - Kühne, Hans-Carsten T1 - Pore structure of concrete with recycling aggregates N2 - Processed building rubble containing about 90 % of crushed concrete can be used as recycling aggregates. The reuse for the production of new high-grade concrete requires a knowledge of the engineering properties as well as the pore structure of These materials. Two recycling aggregates and the concretes made with them were studied. T2 - 33th International Geological Congress (IGC) Symposium on Mineral Resources - Constructions Materials (MRC) CY - Oslo, Norway DA - 06.08.2008 PY - 2008 AN - OPUS4-16778 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ried, Peter A1 - Gaber, Martin A1 - Kluge, Martin A1 - Müller, Ralf A1 - Holtappels, Kai A1 - Eliezer, Dan T1 - H2-permeability and burst pressure of glass capillaries N2 - This publication deals with the topics: pressure loading, permeability and burst pressure T2 - Intern. Con. on Glass ICG 2010 CY - Bahia, Brazil DA - 20.09.2010 KW - Pressure loading KW - Permeability KW - Burst pressure PY - 2010 N1 - Geburtsname von Kluge, Martin: Beckmann-Kluge, M. - Birth name of Kluge, Martin: Beckmann-Kluge, M. AN - OPUS4-22296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Tavernaro, Isabella A1 - Chaudhary, A. A1 - Resch-Genger, Ute T1 - Development of amorphous silica particle based reference materials for surface functional group quantification N2 - Functionalized nanomaterials (NM) with their unique size-dependent properties are of increasing relevance for current and future developments in various fields such as medical and pharmaceutical industry, computing, electronics or food and consumer products. The performance and safety of NM are determined by the sum of their intrinsic physicochemical properties.1 Besides other key parameters, the particle surface chemistry, which is largely controlled by the chemical nature and density of functional groups and ligands, must be considered for a better performance, stability, and processibility of NM, as well as their interaction with the environment. Thus, particle standards with well-designed surfaces and methods for functional group quantification can foster the sustainable development of functional and safe(r) NM.2 Here we provide a brief overview of the ongoing research in division Biophotonics to design tailored amorphous silica reference particles with bioanalytically relevant functional groups and ligands, for the development of standardized and validated surface functional group quantification methods. T2 - Workshop NanoRiskSD project CY - Berlin, Germany DA - 09.06.2022 KW - Nanoparticle KW - Surface analysis KW - Silica KW - Fluorescence KW - Assay PY - 2022 AN - OPUS4-55004 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rautenberg, Max A1 - Gernhard, Marius A1 - Low, Jian L. A1 - Paulus, Beate A1 - Roth, Christina A1 - Emmerling, Franziska T1 - The Effect of Fluorine on Catalysts for the Oxygen Reduction Reaction obtained from Metal Organic Frameworks N2 - The oxygen reduction reaction (ORR) – an important reaction in electrochemical devices, such as fuel cells - is characterized by its sluggish kinetics and therefore requires catalysis. The industry currently relies on platinum as a catalyst, although it is scarce and expensive, hindering the commercial breakthrough of fuel cells in automotive applications. Platinum-free catalysts on basis of nitrogen- and metal doped carbons (NMCs) and fluorinated carbons are promising materials to replace platinum-based catalysts for the ORR. In this work we prepared six metal-organic frameworks (MOFs) by mechanical ball mill grinding and studied their formation by in-situ powder X-ray diffraction. Furthermore, the samples were carbonized under controlled conditions (900°C, 1h, N2-atmosphere) to yield carbon materials, that were employed in ORR-electrocatalysis. The effect of Co-doping and fluorination was systematically studied and outstanding ORR activity was found for the catalyst prepared from the Co-doped fluorinated ZIF-8. T2 - International Symposium on Fluorine-specific interactions CY - Berlin, Germany DA - 27.09.2021 KW - PGM-free catalyst KW - Oxygen Reduction Reaction KW - Mechanochemistry KW - MOFs PY - 2021 AN - OPUS4-53533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Influence of molecular orientation on the environmental stress cracking resistance N2 - Molecular orientation has a significant effect on the material properties of polymers. Preferential orientation of the microstructure (polymer chains or crystallites) in a specific direction or plane often enhances the material properties, especially if the high-strength covalent bonds are primarily exposed to loads instead of the weaker van der Waals bonds. However, the orientation-dependent microstructure and its mechanical behavior is in general already well understood by many scientific studies [1-3]. Isotropic materials are frequently required for an intrinsic material characterization without prevailing processing-induced properties, as is the case for Full Notch Creep Test (FNCT) [4] addressing environmental stress cracking (ESC) in high-density polyethylene (PE-HD) [5, 6]. Since ESC is one of the major limiting issues for long-term performance of PE-HD pipes and containers [7], which in contrast have a production-related preferential orientated microstructure due to extrusion or extrusion blow molding, it is important to additionally investigate the ESC resistance of such anisotropic microstructure. Investigations of the slow crack growth (SCG) with respect to the molecular orientation generally obtain a factor of 1.2 up to 4.7 between crack growth perpendicular to the extrusion direction and crack growth parallel to the extrusion direction 8. Based on FNCT investigations with an aqueous detergent solution as environmental medium, hot pressed sheets with isotropic morphology are compared with extruded sheets from which specimens with different orientation angles are taken. However, the time to failure obtained by FNCT is also significantly influenced by the different cooling conditions under which the final morphology is formed. The tendency of the specimen to fail due to ESC is investigated as a function of environmental medium temperature. For a more detailed analysis of the affecting parameters in the manufacturing process, the ESC resistance is discussed considering the differences in crystallinity as revealed by thermal analysis. T2 - 36th International Conference of the Polymer Processing Society CY - Montreal, Canada DA - 26.09.2021 KW - Environmental stress cracking KW - Orientation-dependent microstructure KW - High-density polyethylene KW - Full Notch Creep Test PY - 2021 AN - OPUS4-53399 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fayet, G. A1 - Wehrstedt, Klaus-Dieter A1 - Knorr, Annett A1 - Rotureau, P. T1 - First models to predict thermal decomposition properties of possible self-reactive substances based on industrial datasets N2 - Self-reactive substances are unstable chemical substances which can easily decompose and may lead to explosion. For this reason, their thermal stability properties are required within regulatory frameworks related to chemicals in order to assess their hazardous properties. Due to the fast development and availability of computers, predictive approaches like QSPR models are increasingly used in the evaluation process of hazardous substances complementary to experiments. In that context, the HAZPRED project (2015-2018) aimed to develop QSPR models to predict physical hazards of substances to fill the lack of knowledge on these hazardous substances quickly. An experimental campaign, based on 50 samples provided by Industrial producers, was carried out on potential self-reactive substances, for which no QSPR model already existed. Their heats of decomposition were characterized using differential scanning calorimetry in homogeneous experimental conditions. QSPR models were derived using the GA-MLR method (using a genetic algorithm and multi-linear regressions) using molecular descriptors calculated by Dragon software based on both 3D molecular structures from density functional theory (DFT) optimizations, to access three-dimensional descriptors, and SMILES codes, favoring the access to simpler models, requiring no preliminary quantum chemical calculations. All models respected the OECD validation guidelines for regulatory acceptability of QSPR models. They were tested by internal and external validation tests and their applicability domains were defined and analyzed. If improved models should be expected with larger database (and a better ratio between size and chemical diversity), these first models already represent a screening tool capable to access early reactive hazards. T2 - 19th International Workshop on Quantitative Structure-Activity Relationships in Environmental and Health Sciences CY - Online meeting DA - 07.06.2021 KW - QSPR KW - Self-reactive substances KW - Thermal decomposition PY - 2021 AN - OPUS4-53178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Dinter, Adelina-Elisa A1 - An-Stepec, Biwen Annie A1 - Wurzler, Nina A1 - Özcan Sandikcioglu, Özlem A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Deciphering corrosion processes of MIC organisms - single cell-ICP-ToF-MS analysis of archaea on solid steels N2 - ICP-ToF (time of flight) MS enables the analysis of the multi-element fingerprint of single cells. The single cell ICP-ToF-MS is used in the presented poster for the analysis of archaea involved in microbiologically influenced corrosion (MIC) of steel. By means of sc-ICP-ToF-MS, the possible uptake of individual elements from the respective steel is investigated - the information obtained will be used in the future to elucidate underlying mechanisms and develop possible material protection concepts. The work combines modern methods of analytical sciences with materials. T2 - SALSA - Make & Measure 2021 CY - Online meeting DA - 16.09.2021 KW - Sc-ICP-ToF-MS KW - Single cell analysis KW - Microbiologically influenced corrosion KW - Archaea KW - Poster presentation PY - 2021 AN - OPUS4-53337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -