TY - CONF A1 - Oesch, Tyler T1 - In-situ CT investigation of pull-out failure for reinforcing bars embedded in conventional and high-performance concretes N2 - The use of high-performance concretes holds great promise for many structural applications. This paper investigates the performance of these materials when used in combination with traditional reinforcing bars. An improved understanding of failure during reinforcing bar pull-out from high-performance concretes is needed in order to better predict the embedment length required to develop full reinforcing bar pull-out strength and the required thickness of reinforcing bar cover for adequate corrosion protection. The cracking structures surrounding the reinforcing bars were analyzed using x-ray computed tomography (CT) in order to determine the stress states causing failure. This was accomplished by conducting in-situ reinforcing bar pull-out experiments during CT scanning. A conventional concrete, a high-strength concrete, and a high-strength fiber reinforced concrete were all tested during the experiments. The results of these experiments showed that the levels of brittleness of the different concrete materials had a major impact on the failure mechanisms that they experienced during reinforcing bar pull-out. It was also clear that the specimen geometry and the casting method had a major impact on fiber orientation. The inclusion of fibers within concrete was also found to significantly improve strength and corrosion protection during reinforcing bar pull-out. T2 - 6th Conference on Industrial Computed Tomography CY - Wels, Austria DA - 09.02.2016 KW - Fiber KW - Reinforcing Bar KW - Computed Tomography KW - In-Situ KW - High-Performance Concrete PY - 2016 AN - OPUS4-35521 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Stroh, Julia T1 - High resolution in situ monitoring of the initial cement hydration influenced by organic admixtures N2 - Numerous admixtures are used in the building practice to customize the properties of the cement paste during application. The influences of admixtures on the course of cement hydration and formation of hydrate phases have to be considered. Polycarboxylate ether (PCE) based polymeric superplasticizers (SPs) are known to retard the setting of the cement paste. The extent of the retardation differs depending on the molecular structure of the SP. Additionally, the presence of a stabilizing agent (SA) in the cement paste has a retarding side effect on the setting. The initial cement hydration processes and the detailed mechanisms of the retardation influenced by PCEs, as well as their interactions with particular SAs, are insufficiently understood. Up to now, only the results of phenomenological studies were taken into account to describe this retardation process. A detailed structure analysis monitoring the change of the phase composition during the hydration was never applied. Both SP and SA affect the adsorption of the sulphate ions on the clinker particles, causing changes in the formation of ettringite during the initial hydration, and are therefore a crucial part of the setting process itself. Here, the initial hydration of cement influenced by the interaction of SP and SA was monitored in situ by synchrotron X-ray diffraction. The high time resolution of the measurements allowed a continuous detection of the hydrates formed. The hydration was followed from the starting point of water addition and for couple of hours afterwards. The hydration of the levitated cement pellets containing starch as SA was initialized by adding aqueous solutions of different commercial SPs. Changes in the ettringite formation were detected in comparison to the reference hydration of pure cement. T2 - Early Age Concrete: From the Research Lab to the Construction Site CY - Tomsk, Russia DA - 02.06.2015 KW - Portland cement KW - Initial hydration KW - Superplasticizer KW - Stabilizer KW - Synchrotron XRD PY - 2015 AN - OPUS4-35470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Taabache, Soraya T1 - Microfluidic-Assisted Self-Assembly of Dendritic Amphiphiles N2 - The controlled production of supramolecular aggregates formed by the self-assembly of dendritic amphiphiles is of great interest owing to their potential application in the fields of nanotechnology and nanomedicine. Dendritic amphiphiles as building blocks offer the advantage that their structure and size can be precisely tuned through organic synthesis. This synthetic flexibility enables the fine-tuning of the hydrophobic to hydrophilic ratio of the dendritic segments, which mainly controls the morphology of the self-assembled structures. A promising method for the controlled preparation of supramolecular assemblies is based on the use of micromixers.[5,6] Due to their mixing times in the range of milliseconds at the microscale level, the application of such microfluidic systems benefits from a high mixing efficiency, a low mixing time and a reproducible synthesis compared to conventional batch-based techniques such as the solvent injection method or the film hydration method. Herein, we report on the microfluidic-assisted self-assembly of several dendritic amphiphiles and the impact of the mixing parameters on the self-assembly process. T2 - Makromolekulares Kolloquium 2016 CY - Freiburg im Breisgau, Germany DA - 24.02.2016 KW - Dendritic amphiphiles KW - Self-assembly KW - Dendrimersomes KW - Micromixer KW - Microfluidic PY - 2016 AN - OPUS4-35477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Steinborn, Gabriele T1 - Stable aqeous niobium carbide suspensions for production of homogeneous hard materials N2 - Hard materials consist of a hard phase embedded in a metallic binder. In order to achieve high toughness and strength, it is necessary to have a perfect mixing of hard phase and binder, which is mainly achieved by ball milling. Niobium carbide (NbC) has a high potential to substitute tungsten carbide as hard material. The publication presents the development of stable homogeneous and de-agglomerated NbC-dispersions. To prevent agglomeration of the powder, stable suspensions were achieved by surface treatments with the dispersants (PD and HD), which resulted in a charge reversal from a negative to a positive zeta potential. This surface-modified powder guaranteed a stable re-dispersion in the binder suspension. Nickel powder was added as metallic binder. This suspension was suited for 3D-printing. The green samples could be sintered in vacuum or Argon atmosphere. T2 - 91. Jahrestagung der deutschen keramischen Gesellschaft CY - Freiberg, Germany DA - 07.03.2016 KW - Niobium carbide powder KW - Stable suspensions KW - Reduction of agglomerates PY - 2016 AN - OPUS4-35636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wu, Cheng-Chieh T1 - Inverse finite element adjustment of material parameters from integrated analysis of displacement field measurement N2 - The integration of finite element method (FEM) into the least-squares adjustment presented in is further extended for a joint evaluation of an elastostatic model and displacement field measurement. For linear solids which obey the Hooke's law, the material parameters determination from measurements is being examined. T2 - 32nd Danubia-Adria Symposium on advances in experimental mechanics CY - Starý Smokovec, Slovakia DA - 22.09.2016 KW - Integrated analysis KW - Inverse problem KW - Finite element method KW - Least-squares adjustment KW - Model and measurement based analysis PY - 2015 AN - OPUS4-35648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Mimicking lizard-like surface structures upon ultrashort laser pulse irradiation of inorganic materials N2 - The wetting behavior of material surfaces can be controlled by surface structures. We functionalized inorganic material surfaces, such as steel, titanium alloy and silicon, to modify the wetting behavior using ultrashort laser pulses (fs- to ps-range). The laser processing was performed by scanning the laser beam across the surface of initially polished flat sample material. A combined experimental and theoretical study of the laser processing parameters (peak fluence, scan velocity, line overlap) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, grooves, micro cones, dimples, etc.). Analyses of the surface using optical as well as scanning electron microscopy allowed the identification of morphologies providing the optimum similarity to the natural skin of lizards. For mimicking skin structures of moisture-harvesting lizards towards an optimization of the surface wetting behavior, additionally, a two-step laser processing strategy was established for realizing hierarchical micro- and nanostructures. In this approach, a laser-generated regular array of small dimples was superimposed (step 2) to the micron-scaled capillaries processed before (step 1). Optical focus variation imaging measurements finally revealed the three dimensional topography of the laser processed surfaces derived from lizard skin structures. The functionality of these surfaces was analyzed in view of wetting properties. T2 - E-MRS 2016 Spring Meeting, Symposium C: "Laser-material interactions for tailoring future applications" CY - Lille, France DA - 02.05.2016 KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Steel KW - Lizard KW - Wetting PY - 2016 AN - OPUS4-36047 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn T1 - Tribological properties of femtosecond laserinduced periodic surface structures on metals N2 - Laser-induced periodic surface structures (LIPSS, ripples) were generated on steel and titanium surfaces upon irradiation with multiple linear polarized femtosecond laser pulses (pulse duration 30 fs, central wavelength 790 nm). The experimental conditions (laser fluence, spatial spot overlap) were optimized in a sample-scanning geometry for the processing of large surface areas covered homogeneously by the nanostructures. The irradiated surface regions were subjected to optical microscopy (OM), white light interference microscopy (WLIM) and scanning electron microscopy (SEM) revealing sub-wavelength spatial periods. The nanostructured surfaces were tribologically tested under reciprocal sliding conditions against a sphere of hardened 100Cr6 steel at 1 Hz using paraffin oil and engine oil as lubricants. After 1000 sliding cycles at a load of 1.0 N, the corresponding wear tracks were characterized by OM and SEM. For specific conditions the laser-generated nanostructures endured the tribological treatment. Simultaneously, a significant reduction of the friction coefficient was observed in the laser-irradiated (LIPSS-covered) areas when compared to the non-irradiated surface, indicating the potential benefit of laser surface structuring for tribological applications. T2 - SPIE Photonics West Conference, Symposium "Laser Applications in Microelectronic and Optoelectronic Manufacturing" (LAMOM) XXI CY - San Francisco, CA, USA DA - 13.02.2016 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Friction KW - Wear PY - 2016 AN - OPUS4-36041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kirner, Sabrina T1 - Femtosecond laser-induced periodic surface structures on titanium nitride coatings for tribological applications N2 - Laser-induced periodic surface structures (LIPSS) were generated on titanium nitride (TiN) hardcoating surfaces (deposited on metallic substrates) upon irradiation with multiple linearly polarized femtosecond laser pulses in air (30 fs duration, 790 nm wavelength, 1 kHz pulse repetition rate). The conditions were optimized in a sample-scanning geometry for the processing of large surface areas (5 mm x 5 mm) covered homogeneously by nanostructures with sub-wavelength periods ranging between ~200 nm and 700 nm. For these nanostructures the coefficient of friction was characterized under reciprocating sliding condition against a ball of hardened steel at 1 Hz using different lubricants (regime of mixed friction). After 1000 cycles, the corresponding wear tracks were characterized by optical and scanning electron microscopy. High-resolution energy dispersive X-ray analyzes (EDX) allowed the visualization of chemical alterations within the wear tracks. For specific conditions, the nanostructures endured the tribological treatment. Our experiments provide a qualification of the tribological performance of the fs-LIPSS on TiN surfaces. T2 - E-MRS 2016 Spring Meeting, Symposium C: "Laser-material interactions for tailoring future applications" CY - Lille, France DA - 02.05.2016 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Tribology KW - Friction KW - Wear KW - Titanium nitride PY - 2016 AN - OPUS4-36042 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Naghib-zadeh, Hamid T1 - High-strength and gas-tight ceramic-ceramic joints by RAB composite tapes N2 - Ceramic components with complex shape cannot be produced frequently by usual ceramic forming and sintering processes. Therefore, numerous joining methods were developed and introduced in industrial scale. Nowadays, multi-stage Mo-Mn-process and active brazing are preferentially used, if temperature-stable and gastight joints are required. Unfortunately, both processes involve cost-intensive thermal processes: hydrogenous atmosphere is essential for metallization in Mo-Mn-process and active brazing takes place under vacuum. Thermal processes can be drastically simplified by using Reactive Air Brazing (RAB). Joining under air atmosphere is an interesting alternative, especially to join oxide ceramic components among themselves. So far, main disadvantage of RAB is low strength of join connections. Aim of this investigation was the development of high-strength, thermal shock resistant and gastight ceramic-ceramic joints by RAB. Therefore, - commercial, silver and copper oxide containing RAB soldering composition was modified by addition of ceramic particles with low thermal expansion coefficients (TEC). Hence, thermal misfit between TEC of solder and ceramic components was significantly reduced. - RAB soldering paste was replaced with newly developed RAB composite tapes, produced by ceramic “doctor blade” technology. Thereby, improved potential exist to tailor the brazing layer relating to composition, thickness and thickness uniformity. Gastight alumina-alumina, alumina-zirconia and zirconia-zirconia joints with strongly improved strength were produced by novel composite tapes. No strength degradation of joints was observed after thermal cycling up to 700°C. T2 - Jahrestagung der Deutschen Keramischen Gesellschaft (DKG) 2016 CY - Freiberg, Germany DA - 07.03.2016 KW - Brazing KW - Compsite tapes KW - Ceramic-ceramc joints PY - 2016 AN - OPUS4-36114 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Holger T1 - THz-ToF techniques for the detection of inherent discontinuities in dielectric materials based on SAFT N2 - The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. Changes of travelling time (ToF) and pulse shape due to the interactions of THz pulses with the dielectric material and its inherent discontinuities can be observed. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. T2 - 7th International Workshop on Terahertz Technology and Applications CY - Kaiserslautern, Germany DA - 15.03.2016 KW - Terahertz synthetic aperture dielectric materials PY - 2016 AN - OPUS4-36221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -