TY - JOUR A1 - Marko, A. A1 - Bähring, S. A1 - Raute, J. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Transferability of ANN-generated parameter sets from welding tracks to 3D-geometries in Directed Energy Deposition N2 - Directed energy deposition (DED) has been in industrial use as a coating process for many years. Modern applications include the repair of existing components and additive manufacturing. The main advantages of DED are high deposition rates and low energy input. However, the process is influenced by a variety of parameters affecting the component quality. Artificial neural networks (ANNs) offer the possibility of mapping complex processes such as DED. They can serve as a tool for predicting optimal process parameters and quality characteristics. Previous research only refers to weld beads: a transferability to additively manufactured three-dimensional components has not been investigated. In the context of this work, an ANN is generated based on 86 weld beads. Quality categories (poor, medium, and good) are chosen as target variables to combine several quality features. The applicability of this categorization compared to conventional characteristics is discussed in detail. The ANN predicts the quality category of weld beads with an average accuracy of 81.5%. Two randomly generated parameter sets predicted as “good” by the network are then used to build tracks, coatings,walls, and cubes. It is shown that ANN trained with weld beads are suitable for complex parameter predictions in a limited way. KW - Welding parameter KW - Quality assurance KW - DED KW - Artificial neural network KW - Additive manufacturing PY - 2022 U6 - https://doi.org/10.1515/mt-2022-0054 SN - 0025-5300 VL - 64 IS - 11 SP - 1586 EP - 1596 PB - De Gruyter AN - OPUS4-56278 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jokisch, T. A1 - Gook, S. A1 - Marko, A. A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser beam welding of additive manufactured components: Applicability of existing valuation regulations N2 - With additive manufacturing in the powder bed, the component size is limited by the installation space. Joint welding of additively manufactured parts offers a possibility to remove this size limitation. However, due to the specific stress and microstructure state in the additively built material, it is unclear to what extent existing evaluation rules of joint welding are also suitable for welds on additive components. This is investigated using laser beam welding of additively manufactured pipe joints. The welds are evaluated by means of visual inspection, metallographic examinations as well as computed tomography. The types of defects found are comparable to conventional components. This is an indicator that existing evaluation regulations also map the possible defects occurring for weld seams on additive components. KW - Weld imperfections KW - Additive manufacturing KW - Weldability KW - Laser welding PY - 2022 VL - 2 SP - 109 EP - 113 PB - DVS Media GmbH AN - OPUS4-56374 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Mohr, Gunther A1 - Hilgenberg, Kai A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Thermografische Prozessüberwachung bei der BAM – Additive Fertigung von Metallen N2 - Vorstellung des TF-Projektes ProMoAM und von Ergebnissen des in-situ Monitorings mit Thermografie T2 - Sitzung des VDI-GPL-FA 105.2 Additive Manufacturing-Metalle CY - Online meeting DA - 27.02.2019 KW - Additive manufacturing KW - In situ Monitoring KW - Thermograhy PY - 2019 AN - OPUS4-53534 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Scheuschner, Nils A1 - Altenburg, Simon A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Vergleich der Messungen der Schmelzbadtemperatur bei der Additiven Fertigung von Metallen mittels IR-Spektroskopie und Thermografie T1 - Comparison of measurements of the melt pool temperature during the additive production of metals by means of IR spectroscopy and thermography N2 - Im Rahmen des Themenfeldprojektes „Process Monitoring of AM“ (ProMoAM) evaluiert die Bundesanstalt für Materialforschung und -Prüfung (BAM) gegenwärtig die Anwendbarkeit verschiedenster ZfP-Verfahren zur in-situ Prozessüberwachung in der additiven Fertigung (AM) von Metallen in Hinblick auf die Qualitätssicherung. Einige der wichtigsten Messgrößen sind hierbei die Temperatur des Schmelzbades und die Abkühlrate, welche starken Einfluss auf das Gefüge und die Eigenspannung haben. Aufgrund der Zugänglichkeit zum Werkstück während des Bauprozesses bieten sich optische Verfahren zu Temperaturbestimmung an. Hierbei stellen jedoch u. a. die hohe Bandbreite der zu messenden Temperaturen, die Bestimmung der Emissivität und ihre Änderung bei Phasenübergängen der verwendeten Legierung große experimentelle Herausforderungen dar. Eine weitere Herausforderung stellt für die IR-Spektroskopie die Absorption durch das Schutzgas und weitere optische Elemente dar. Um diese auch in einem industriellen Umfeld kompensieren zu können, wurde eine Methode entwickelt, die das gemessene Spektrum bei der Verfestigung des Werkstoffes als Referenz nutzt. In diesem Beitrag wird die Anwendung dieser Methode für die IR-Spektrometrie als auch Thermografische Messungen beim Laser-Pulver-Auftragschweißen von 316L gezeigt, wobei beide Methoden weiterhin in Hinblick auf ihre individuellen Vor- und Nachteile miteinander verglichen werden. N2 - Within the topic area project “Process Monitoring of AM” (ProMoAM) the Federal Institute for Materials Research and Testing is currently evaluating the applicability of various NDT methods for in-situ process Monitoring in the additive manufacturing (AM) of metals with regard to quality assurance. Two of the most important variables to measure are the temperature of the molten pool and the cooling rate, which have a strong influence on the microstructure and the residual stress. Due to the accessibility of the workpiece during the construction process, optical methods for temperature determination are suitable. However, the wide range of temperatures to be measured, the determination of emissivity and its change during phase transitions of the alloy pose great experimental challenges. Another challenge for IR spectroscopy is the absorption by the inert gas and other optical elements. In order to be able to compensate for this in an industrial environment, a method was developed which uses the measured spectrum as a reference when the material is solidified. This paper shows the application of this method for IR spectrometry as well as thermographic measurements during laser powder cladding of 316L. Furthermore both methods are compared with respect to their individual Advantages and disadvantages. KW - Laser-Pulver-Auftragschweißen KW - Thermografie KW - Direct Energy Deposition KW - IR-Spektroskopie KW - Additive Fertigung KW - Laser metal deposition KW - Thermography KW - IR-spectroscopy KW - Additive manufacturing PY - 2021 U6 - https://doi.org/10.1515/teme-2021-0056 VL - 88 IS - 10 SP - 626 EP - 632 PB - De Gruyter CY - Oldenburg AN - OPUS4-52987 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey T1 - Comparison of MWIR and NIR thermography in a laser metal deposition (LMD) process N2 - Additive manufacturing (AM) offers a range of novel applications. However, the manufacturing process is complex and the production of defect-free parts with a high reliability is still a challenge. Thermography is a valuable tool for process surveillance, especially in metal AM processes. The high process temperatures allow one to use cameras usually operating in the visible spectral range. Here, we compare the results of first measurements during the manufacturing process of a commercial laser metal deposition (LMD) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - 14th Quantitative InfraRed Thermography Conference CY - Berlin, Germany DA - 25.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - ProMoAM PY - 2018 AN - OPUS4-45408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gumenyuk, Andrey A1 - Mohr, Gunther A1 - Hilgenberg, Kai T1 - Thermography in metal AM: Comparison of high-speed NIR thermography and MWIR thermography N2 - Additive manufacturing (AM) opens the route to a range of novel applications.However, the complexity of the manufacturing process poses a challenge for the production of defect-free parts with a high reliability. Since process dynamics and resulting microstructures of AM parts are strongly influenced by the involved temperature fields, thermography is a valuable tool for process surveillance. The high process temperatures in metal AM processes allow one to use cameras usually operating in the visible spectral range to detect the thermally emitted radiation from the process. In our work, we compare the results of first measurements during the manufacturing processes of a commercial laser metal deposition (LMD) setup and a laser beam melting (LBM) setup using a MWIR camera with those from a VIS high-speed camera with band pass filter in the NIR range. T2 - Additive Manufacturing Benchmarks 2018 CY - Gaithersburg, MA, USA DA - 18.06.2018 KW - Thermography KW - Additive manufacturing KW - Laser metal deposition KW - Laser beam melting KW - ProMoAM PY - 2018 AN - OPUS4-45401 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Graf, B. A1 - Schuch, M. A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Build-up strategies for additive manufacturing of three dimensional Ti-6Al-4V-parts produced by laser metal deposition N2 - Laser metal deposition (LMD) has been applied as a coating technology for many years. Today, the technologies capacity to produce 3D depositions leads to a new field of application as additive manufacturing method. In this paper, 3D laser metal deposition of titanium alloy Ti-6Al-4V is studied with special regard to the demands of additive manufacturing. Therefore, only the coaxial LMD powder nozzle is used to create the shielding gas atmosphere, which ensures high geometric flexibility. Furthermore, specimen with high aspect ratio and hundreds of layers are manufactured, which represent typical features in additive manufacturing. The presented study contains the following steps: First, cylindrical specimens are manufactured with a standard shell-core build-up strategy and mechanical properties as well as fracture mechanisms are determined. Based on the results, experiments are conducted to improve the build-up strategy and new tensile test specimens are built with the improved strategy. The improved strategy incorporates variable track overlap ratios to achieve a constant growth in the shell and core area. As blanks, lean cylinders comprising more than 240 layers and a height of more than 120mm are manufactured. The specimens are analyzed by X-ray inspection for material defects. Fractured surfaces are observed via scanning electron microscopy and the composition of the surfaces is determined using energy dispersive X-ray spectroscopy. The tensile test results prove mechanical properties close to ASTM F1108 specification for wrought material. KW - Laser metal deposition KW - Ti-6Al-4V KW - Additive manufacturing KW - Titanium alloy KW - Turbine components PY - 2018 U6 - https://doi.org/10.2351/1.4997852 SN - 1938-1387 SN - 1042-346X VL - 30 IS - 2 SP - UNSP 022001, 1 EP - 13 PB - Laser Institute of America AN - OPUS4-44655 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Graf, B. A1 - Marko, A. A1 - Petrat, T. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - 3D laser metal deposition: process steps for additive manufacturing N2 - Laser metal deposition (LMD) is an established technology for two-dimensional surface coatings. It offers high deposition rates, high material flexibility, and the possibility to deposit material on existing components. Due to these features, LMD has been increasingly applied for additive manufacturing of 3D structures in recent years. Compared to previous coating applications, additive manufacturing of 3D structures leads to new challenges regarding LMD process knowledge. In this paper, the process steps for LMD as additive manufacturing technology are described. The experiments are conducted using titanium alloy Ti-6Al-4Vand Inconel 718. Only the LMD nozzle is used to create a shielding gas atmosphere. This ensures the high geometric flexibility needed for additive manufacturing, although issues with the restricted size and quality of the shielding gas atmosphere arise. In the first step, the influence of process parameters on the geometric dimensions of single weld beads is analyzed based on design of experiments. In the second step, a 3D build-up strategy for cylindrical specimen with high dimensional accuracy is described. Process parameters, travel paths, and cooling periods between layers are adjusted. Tensile tests show that mechanical properties in the as-deposited condition are close to wrought material. As practical example, the fir-tree root profile of a turbine blade is manufactured. The feasibility of LMD as additive technology is evaluated based on this component. KW - Laser metal deposition KW - Build-up strategy KW - Deposition rate KW - Additive manufacturing PY - 2018 U6 - https://doi.org/10.1007/s40194-018-0590-x SN - 0043-2288 SN - 1878-6669 VL - 62 IS - 4 SP - 877 EP - 883 PB - Springer Berlin Heidelberg CY - Heidelberg AN - OPUS4-44868 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - El-Sari, B. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Investigation of the Application of a C-ring Geometry to validate the Stress Relief Heat Treatment Simulation of Additive Manufactured Austenitic Stainless Steel Parts via Displacement N2 - Directed energy deposition is a metal additive manufacturing process that builds parts by joining material in a layer-by-layer fashion on a substrate. Those parts are exposed to rapid thermo-cycles which cause steep stress gradients and the layer-upon-layer manufacturing fosters an anisotropic microstructure, therefore stress relief heat treatment is necessary. The numerical simulation can be used to find suitable parameters for the heat treatment and to reduce the necessary efforts to perform an effective stress relieving. Suitable validation Experiments are necessary to verify the results of the numerical simulation. In this paper, a 3D coupled thermo-mechanical model is used to simulate the heat treatment of an additive manufactured component to investigate the application of a C-ring geometry for the distortion-based validation of the numerical simulation. Therefore, the C-ring samples were 3D scanned using a structured light 3D scanner to quantify the distortion after each process step. KW - Additive manufacturing KW - Directed energy deposition KW - Laser KW - Heat treatment KW - Numerical simulation PY - 2020 U6 - https://doi.org/10.3139/105.110417 VL - 75 IS - 4 SP - 248 EP - 259 PB - Carl Hanser Verlag AN - OPUS4-51318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Altenburg, Simon A1 - Scheuschner, Nils A1 - Pignatelli, Giuseppe A1 - Maierhofer, Christiane A1 - Straße, Anne A1 - Gornushkin, Igor B. A1 - Gumenyuk, Andrey T1 - Thermography and optical emission spectroscopy: Simultaneous temperature measurement during the LMD process N2 - For metal-based additive manufacturing, sensors and measuring systems for monitoring of the energy source, the build volume, the melt pool and the component geometry are already commercially available. Further methods of optics, spectroscopy and non-destructive testing are described in the literature as suitable for in-situ application, but there are only a few reports on practical implementations. Therefore, a new BAM project aims to develop process monitoring methods for the in-situ evaluation of the quality of additively manufactured metal components. In addition to passive and active thermography, this includes optical tomography, optical emission and absorption spectroscopy, eddy current testing, laminography, X-ray backscattering and photoacoustic methods. These methods are used in additive manufacturing systems for selective laser melting, laser metal deposition and wire arc additive manufacturing. To handle the sometimes huge amounts of data, algorithms for efficient preprocessing are developed and characteristics of the in-situ data are extracted and correlated to defects and inhomogeneities, which are determined using reference methods such as computer tomography and metallography. This process monitoring and fusion of data of different measurement techniques should result in a significant reduction of costly and time-consuming, destructive or non-destructive tests after the production of the component and at the same time reduce the production of scrap. Here, first results of simultaneous measurements of optical emission spectroscopy and thermography during the laser metal deposition process using 316L as building material are presented. Temperature values are extracted from spectroscopic data by fitting of blackbody emission spectra to the experimental data and compared with results from a thermographic camera. Measurements with and without powder flow reveal significant differences between welding at a pristine metal surface and previously melted positions on the build plate, illustrating the significant influence of the partial oxidation of the surface during the first welding process on subsequent welding. The measurement equipment can either be mounted stationary or following the laser path. While first results were obtained in the stationary mode, future applications for online monitoring of the build of whole parts in the mobile mode are planned. This research was funded by BAM within the focus area Material. T2 - 2nd international congress on welding, additive manufacturing and associated non-destructive testing CY - Metz, France DA - 05.06.2019 KW - Additive manufacturing KW - Laser metal deposition KW - Thermography KW - Optical emission spectroscopy KW - Process monitoring PY - 2019 AN - OPUS4-48228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -