TY - CONF A1 - Pavlov, V.A. A1 - Zavialov, S.V. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Development of a measuring technology of strain field in welds N2 - In the article considered the problem of hot cracks occurrence during laser welding process. The main reason of their appearance is strain. The optical method for measuring full field strain locally near the solidification front during laser welding process is proposed. The proposed method of optical measurement allows to determine the real values of the critical strain for various materials characterizing the occurrence of hot cracks in laser welding process. T2 - 20th international conference "Digital signal processing and applications DSPA-2018" CY - Moskau, Russia DA - 28.03.2018 KW - Solidification cracking KW - Critical strain KW - Strain rate KW - Optical measurement KW - Laser welding KW - In situ strain PY - 2018 SN - 978-5-905278-33-4 SP - 749 EP - 754 AN - OPUS4-44910 LA - rus AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Huo, W. A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael A1 - Wolter, K. T1 - Strain Prediction Using Deep Learning during Solidification Crack Initiation and Growth in Laser Beam Welding of Thin Metal Sheets N2 - The strain field can reflect the initiation time of solidification cracks during the welding process. The traditional strain measurement is to first obtain the displacement field through digital image correlation (DIC) or optical flow and then calculate the strain field. The main disadvantage is that the calculation takes a long time, limiting its suitability to real-time applications. Recently, convolutional neural networks (CNNs) have made impressive achievements in computer vision. To build a good prediction model, the network structure and dataset are two key factors. In this paper, we first create the training and test sets containing welding cracks using the controlled tensile weldability (CTW) test and obtain the real strain fields through the Lucas–Kanade algorithm. Then, two new networks using ResNet and DenseNet as encoders are developed for strain prediction, called StrainNetR and StrainNetD. The results show that the average endpoint error (AEE) of the two networks on our test set is about 0.04, close to the real strain value. The computation time could be reduced to the millisecond level, which would greatly improve efficiency. KW - Convolutional neural network KW - Strain fields prediction KW - Laser beam welding KW - Solidification cracking PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-570565 VL - 13 IS - 5 SP - 1 EP - 15 PB - MDPI AN - OPUS4-57056 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gumenyuk, Andrey A1 - Bakir, Nasim A1 - Rethmeier, Michael A1 - Pavlov, Vitaly A1 - Zavjalov, Sergey A1 - Volvenko, Sergey T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - The weldability of materials is still for many years a highly contentious issue, particularly regarding the causes of the hot crack formation. Because of the process-related temperature and emissions, direct measurement for the arising strain in the close vicinity of the welding process is challenged. therefore, the externally loaded hot cracking testes remain for decades the only way to determine the critical straining conditions for solidification cracking. In this study, a novel optical two-dimensional in situ observation technique has been developed to analyse the strain evaluation during the welding process in the moment of crack formation. Additionally, the Controlled Tensile Weldability test (CTW test) was used to generate the hot crack under different global straining conditions. To record the welding process and the moment of the solidification crack initiation a CMOS camera was used which inserted coaxially into the optical path of the welding laser. As illumination source a diode laser with wave length 808 nm was employed to illuminate the welding region. An interference filter was placed on the camera lens, allowing only the illumination wavelength to pass through and reflecting all other wavelengths, so that the melt pool and the re-solidifying metal could be visualized in a single image. in order to obtain good temporal resolution, the frame rate of the camera was set to 1100 frame per second in. The contrast in images obtained using this unique setup allows to apply the optical flow technique based on Lucas-Kanade (LK) algorithm to follow the pixels in each image sequence and then to calculate the displacement field. The strain was calculated based on the estimated displacement. Using this technique, the local strains and strain rates under different global straining condition has been determined and analysed. The results shown Dependency between the external strain rate and the critical local strain and strain rate has been observed. That is to say, the critical local strain and strain rate are increased with an increase of the strain rate. Moreover, the described procedure of the optical measurement allows to determine the real martial dependent values of critical strain and strain rate characterizing transition to the hot cracking during laser welding processes.The experiments as well as the measurement has been performed on the stainless steel 316L (1.4404) T2 - 9-th international Conference Beam Technology and Laser Application CY - St. Petersburg, Russia DA - 17.09.2018 KW - Laser welding KW - Novel optical metrology KW - Solidification cracking KW - Stainless steel PY - 2018 AN - OPUS4-46287 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root N2 - In this study, the influence of the welding speed, the arc power, and the laser focal position on the solidification crack formation for partial penetration laser hybrid–welded thick-walled plates was investigated. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity, the crack number was decreased. The focal position shows also a significant influence on the crack number. By focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The metallurgical factors, such as the assumed accumulation of the low-melting eutectics in the weld root, should be a contribution for solidification cracking, where the tensile stress is acting. KW - Laser hybrid welding KW - Solidification cracking KW - Partial penetration welding KW - Weld root KW - Numerical simulation PY - 2020 U6 - https://doi.org/10.1007/s40194-020-00847-w VL - 64 SP - 501 EP - 511 PB - Springer AN - OPUS4-50625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Pavlov, V. A1 - Zavjalov, S. A1 - Volvenko, S. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Novel metrology to determine the critical strain conditions required for solidification cracking during laser welding of thin sheets N2 - This paper represents the results for proposed optical flow method based on the Lucas-Kanade (LK) algorithm applied to two different problems. The following observations can be made: - The estimated strain and displacement for conducted tensile test are generally very close to those measured with conventional DIC-technique. - The LK technique allows measurement of strain or displacement without special selection of a region of interest. Using a novel optical measurement technique together with the optical flow algorithm, a twodimensional deformation analysis during welding was conducted. This technique is the first to provide a measurement of the full strain field locally in the immediate vicinity of the solidification front. Additionally, the described procedure of the optical measurement allows the real material-dependent values of critical strain characterizing the transition to hot cracking during laser welding processes to be determined. T2 - Beam Technologies and Laser Application CY - Sankt Petersburg, Russia KW - Hot cracking test KW - Local critical strain KW - Solidification cracking KW - Laser beam welding KW - Novel metrology PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-467226 SN - 1742-6596 VL - 1109 IS - 012047 SP - 1 EP - 9 PB - IOP Publ. CY - Bristol AN - OPUS4-46722 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of solidification cracking susceptibility during laser beam welding using an in-situ observation technique N2 - In recent years, laser beam welding has found wide applications in many industrial fields. Solidification cracks are one of the most frequently encountered welding defects that hinder obtaining a safe weld joint. Decades of research have shown that one of the main causes of such cracks are the strain and the strain rate. Obtaining meaningful measurements of these strains has always been a major challenge for scientists, because of the specific environment of the measurement range and the many obstacles, as well as the high temperature and the plasma plume. In this study, a special experimental setup with a high-speed camera was employed to measure the strain during the welding process. The hot cracking susceptibility was investigated for 1.4301 stainless steel, and the critical strain required for solidification crack formation was locally and globally determined. KW - Solidification cracking KW - Laser welding KW - Optical measurement KW - In situ strain KW - Critical strain KW - Strain rate PY - 2018 U6 - https://doi.org/10.1080/13621718.2017.1367550 SN - 1362-1718 SN - 1743-2936 VL - 23 IS - 3 SP - 234 EP - 240 PB - Taylor and Francis AN - OPUS4-43992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Biltgen, J. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Influence of Partial Penetration Laser Hybrid Welding Parameters on the Solidification Cracking for Thick-Walled Structures N2 - In this study, the influence of the welding speed and the arc power on the solidification crack formation for partial penetration laser hybrid welded Thick-Walled plates were investigated. Experimentally, a linear correlation between the welding velocity and the crack number was observed. That is by reducing the welding velocity the crack number was reduced. The reduced welding velocity showed a strong impact on stress, as the model demonstrated a very lower stress amount in comparison to the reference case. The reduction of the welding speed could be a helpful technique to reduce the hot cracking. The wire feed speed showed a very slight influence on the crack formation. That can be returned to the large distance between the critical region for cracking and the arc region. T2 - Lasers in Manufacturing Conference 2019 CY - Munich, Germany DA - 24.06.2019 KW - Hybrid laser-arc welding KW - Solidification cracking KW - Thick-walled steel KW - Numerical simulation PY - 2019 SP - 1 EP - 7 PB - WLT Wissenschaftliche Gesellschaft Lasertechnik e.V AN - OPUS4-48733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Gumenyuk, Andrey A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical simulation on the origin of solidification cracking in laser welded thick-walled structures N2 - One of the main factors affecting the use of lasers in the industry for welding thick structures is the process accompanying solidification cracks. These cracks mostly occurring along the welding direction in the welding center, and strongly affect the safety of the welded components. In the present study, to obtain a better understanding of the relation between the weld pool geometry, the stress distribution and the solidification cracking, a three-dimensional computational fluid dynamic (CFD) model was combined with a thermo-mechanical model. The CFD model was employed to analyze the flow of the molten metal in the weld pool during the laser beam welding process. The weld pool geometry estimated from the CFD model was used as a heat source in the thermal model to calculate the temperature field and the stress development and distributions. The CFD results showed a bulging region in the middle depth of the weld and two narrowing areas separating the bulging region from the top and bottom surface. The thermo-mechanical simulations showed a concentration of tension stresses, transversally and vertically, directly after the solidification during cooling in the region of the solidification cracking. T2 - 27TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS - METAL 2018 CY - Brno, Czech Republic DA - 23.05.2018 KW - Laser beam welding KW - Weld pool KW - Full penetration KW - Finite element method (FEM) KW - CFD model KW - Numerical simulation KW - Solidification cracking PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-450595 SN - 2075-4701 VL - 8 IS - 6 SP - 406, 1 EP - 15 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45059 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - About the origin of solidification cracking in laser welded thick-walled structures N2 - In this study, a three-dimensional CFD-simulation model was developed to simulate the fluid flow in the weld pool. The CFD-model showed a bulging region in the middle of the depth, which is separated from the top surface and bottom surface by two narrowing regions. It can be concluded that the interaction of the movement of the laser source with the Marangoni vortex leads to a teardrop shape at the upper and bottom surface of the workpiece. Additionally, it shows that the bulging in the weld is a result of the backflows on the upper and lower sides due to the thermo-capillary-driven flows. The weld pool shape was used as a heat source in a two-dimensional thermomechanical model, which allows a highly accurate transformation of the weld pool dimensions obtained from the CFD model. This developed technique allows the consideration of physical aspects, which cannot be considered when using traditional heat sources. The mechanical model has shown that the chronological order of the solidification of the weld has a significant influence on the nature and distribution of the stresses in the weld. High tensile stress has been observed in the bulging region, i.e. in the susceptible region for solidification cracking, when compared to the other narrowing regions, which show compressive stress. T2 - 4th International Conference on Welding and Failure Analysis of Engineering Materials CY - Aswan, Egypt DA - 19.11.2018 KW - Laser beam welding KW - Solidification cracking KW - Numerical simulation KW - Weld pool geometry KW - CFD-model KW - FE-model PY - 2018 SP - W-6, 1 EP - 10 CY - Aswan, Egypt AN - OPUS4-46735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Observation of the weld pool shape in partial penetration welding and its influence on solidification crack formation for high-power laser beam welding N2 - Solidification cracking is still a particular problem in laser beam welding, especially in the welding of thick-walled plates. In this study, the influence of weld pool geometry on solidification cracking in partial penetration welding of thick plates is a subject of discussion. For this purpose, a special experimental setup of steel and quartz glass in butt configuration and lateral with high speed camera was used to capture the weld pool shape. Additionally, laser beam welding experiments were carried out to compare the crack positions and the cross section with the high-speed camera observations. The results showed a bulge in the weld pool root separated from the upper region by a nick area. This leads to the fact that three different longitudinal lengths with different solidification areas are taking place. This temporal sequence of solidification strongly promotes the solidification cracks in the weld root. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Solidification cracking KW - Laser beam welding KW - Partial penetration PY - 2021 AN - OPUS4-53586 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -