TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. ED - M., Oldenburg ED - J., Hardell ED - D., Caellas T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technolo-gy for lightweight construction, regarding the manufacturing of safety-relevant car body compo-nents. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geo-metrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corrosion protection. However, the coating system leads to an increased adhesive wear on the tool surface due to the high thermo-mechanical tool stresses. Therefore, a time and cost con-suming rework of the hot stamping tools is required. The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This tech-nique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in consequence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of un-modified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - X38CrMoV5-3 KW - TiB2 KW - Hot-Stamping PY - 2019 VL - 2019 SP - 357 EP - 364 AN - OPUS4-48285 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the influence of TiB2, TiC, and TiN hard particles on the microstructure of localized laser dispersed AISI D2 tool steel surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in a deterministic pattern where needed on highly stressed surfaces, i.e., on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free metal matrix composite with a high share of homogeneously distributed particles and, especially, high implant hardness. In this study, TiN, TiC, and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel were investigated. Although all powder materials had grain sizes smaller than 10 μm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (∼64%) was observed for TiB2. By scanning electron microscopy and energy dispersive x-ray spectroscopy, it was also shown that a significant share of the preplaced particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By x-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - ICALEO 2019 CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 KW - TiN KW - TiC KW - Retained Austenite KW - Localized laser dispersing PY - 2020 U6 - https://doi.org/10.2351/7.0000059 VL - 32 IS - 2 SP - 022028 EP - 022028-9 PB - AIP Publishing AN - OPUS4-50712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Localized dispersing of TiB2 and TiN particles via pulsed laser radiation for improving the tribological performance of hot stamping tools N2 - The aim of this study is to increase the tribological performance of hot stamping tools by using a laser implantation process. This technique allows the fabrication of separated, elevated and dome-shaped microfeatures on the tool surface in consequence of a localized dispersing of ceramic particles via pulsed laser radiation. Hence, the topography and material properties of the tool are modified, which influences the tribological interactions at the blank-die interface. However, an appropriate selection of ceramic particles is an essential prerequisite, in order to obtain tailored and highly wear resistant surface features. In this regard, different titanium-based hard particles (TiB2 and TiN) were laser-implanted on hot working tool specimens and subsequently tested by means of a modified pin-on-disk test regarding to their wear and friction behavior. KW - Surface modification KW - Tribology KW - Laser implantation KW - Hot working tool steel KW - Hot stamping PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514171 VL - 94 SP - 901 EP - 904 PB - Elsevier B.V. AN - OPUS4-51417 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the Influence of TiB2 , TiC and TiN Hard Particles on the Microstructure of Localized Laser Dispersed AISI D2 Tool Steel Surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for a tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in deterministic pattern where needed on highly stressed surfaces, i.e. on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free Metal Matrix Composite with a high share of homogeneously distributed particles and especially a high implant hardness. In this study TiN, TiC and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of the pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel was investigated. Although all powder materials had grain sizes smaller than 10 µm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (~64 %) was observed for TiB2. By scanning electron microscopy and energy dispersive X-ray spectroscopy, it was also shown that a significant share of the pre-placed particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in-situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 HV1 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By X-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in-situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 PY - 2019 AN - OPUS4-49316 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spranger, Felix A1 - Schirdewahn, S. A1 - Kromm, Arne A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - On the influence of tib2, tic and tin hard particles on the microstructure of localized laser dispersed aisi d2 tool steel surfaces N2 - The control of friction and wear is a major concern in many industrial applications. A promising method for a tailored surface modification is the so-called laser implantation technique. This method combines surface texturing and material optimization in one processing step by a localized dispersing of hard ceramic particles using pulsed laser radiation. Wear resistant, protruding micrometric features (implants) with defined geometry can be created in deterministic pattern where needed on highly stressed surfaces, i.e. on forming or cutting tools. However, in order to maintain the implants over the tool’s lifetime, a suitable selection of hard ceramic particles is a prerequisite. They must provide a defect-free Metal Matrix Composite with a high share of homogeneously distributed particles and especially a high implant hardness. In this study TiN, TiC and TiB2 hard particles were compared as implant materials for the first time. By a systematic variation of the pulse power and pulse duration, their dispersing behavior and influence on the material properties of AISI D2 tool steel was investigated. Although all powder materials had grain sizes smaller than 10 µm, it was possible to disperse them by pulsed laser radiation and to obtain defect-free protruding implants. The highest share of dispersed particles (~64 %) was observed for TiB2. By scanning electron microscopy and energy dispersive X-ray spectroscopy, it was also shown that a significant share of the pre-placed particles was dissolved by the laser beam and precipitated as nanometer sized particles within the matrix during solidification. These in-situ formed particles have a decisive influence on the material properties. While the TiN and TiC implants have shown maximum hardness values of 750 HV1 and 850 HV1, the TiB2 implants have shown the highest hardness values with more than 1600 HV1. By X-ray diffraction, it was possible to ascribe the lower hardness values of TiC and TiN implants to high amounts of retained austenite in the metal matrix. By implanting TiB2, the formation of retained austenite was successfully suppressed due to the in-situ formation of TiC particles, which was proven by electron backscatter diffraction. In conclusion, all the implant materials are basically suitable for laser implantation on AISI D2 tool steel. However, TiB2 has shown the most promising results. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - Laser implantation KW - Surface texturing KW - AISI D2 KW - TiB2 PY - 2019 SN - 978-1-940168-1-42 SP - 1 EP - 10 AN - OPUS4-49317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André T1 - Influence of Welding Parameters on Electromagnetic Supported Degassing of Die-Cadted and Wrought Aluminium N2 - Laser beam welding of aluminum die casting is challenging. A large quantity of gases (in particular hydrogen) is absorbed by aluminum during the die-cast manufacturing process and is contained in the base material in solved or bound form. After re-melting by the laser, the gases are released and are present in the melt as pores. Many of these metallurgic pores remain in the weld seam as a result of the high solidification velocities. The natural (Archimedean) buoyancy is not sufficient to remove the pores from the weld pool leading to process instabilities and poor mechanical properties of the weld. Therefore, an electromagnetic (EM) system is used to apply an additional buoyancy component to the pores. The physical mechanism is based on the generation of Lorentz forces, whereby an electromagnetic pressure is introduced into the weld pool. The EM system exploits the difference in electrical conductivity between poorly conducting pores (inclusions) and the comparatively better conducting aluminum melt to increase the resulting buoyancy velocity of the pores. Within the present study, the electromagnetic supported degassing is investigated in dependence on the laser beam power, welding velocity and electromagnetic flux density. By means of a design of experiments a systematic variation of these parameters is carried out for partial penetration laser beam welding of 6 mm thick sheets of wrought aluminum alloy AlMg3 and die-cast aluminum alloy AlSi12(Fe) where the wrought alloy serves as a reference. The proportion of pores in the weld seams is determined using X-ray images, computed tomography (CT-) images and cross-section images. The results prove a significant reduction of the porosity up to 70 % for both materials as a function of the magnetic flux density T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - AISI D2 KW - Laser implantation KW - Surface texturing KW - TiB2 PY - 2019 AN - OPUS4-50010 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Spranger, Felix A1 - Oliveira Lopes, M. A1 - Schirdewahn, S. A1 - Merklein, M. A1 - Hilgenberg, Kai T1 - Investigations on TaC Localized Dispersed X38CrMoV5-3 Surfaces With Regard to the Manufacturing of Wear Resistant Protruded Surface Textures N2 - The potential of lowered surface features as well as the application of wear resistant coatings have been known for many years to improve the tribological behavior of forming tools. More recent studies also discuss the capability of protruded microfeatures for adjusting the tribological behavior between contacting surfaces. The demand for a high wear resistance of such structures as well as their economical and reliable production, however, often limits the industrial application. The laser implantation process can overcome these limitations. In contrast to conventional cw-laser dispersing processes, where the formation of uniform metal matrix composite layers is intended, this surface engineering technique aims to improve the tribological behavior of contacting surfaces by a localized dispersing of pre-placed hard ceramic particles. This enables the formation of deterministic textures composed of separated wear resistant dome- or ring-shaped microstructures (implants). Since TaC shows very promising material properties for improving the wear resistance of tools exposed to severe operating conditions, this paper analyzes its suitability for pulsed laser implantation on X38CrMoV5-3 tool steel for the first time. In the experiments, the influence of the particles and the laser parameters (pulse power, pulse duration and focal diameter) on the material properties of the localized dispersed zones was studied by optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy and X-ray diffraction. The composite´s (micro-) hardness was measured and calculated by using a rule of mixture. Additionally, the influence of the laser parameters and the TaC particles on the geometrical properties of the implants was studied by optical microscopy and white light interferometry. The results showed that defect-free implants with hardness values of ~900 HV1 can be obtained at the focal spot, since a localized dispersing of the TaC particles is possible using a pulsed millisecond laser. However, in dependence of the laser intensity, also a partial dissolution of the initial particles occurs. This leads to the precipitation of new dendritic TaC nanoparticles and to varying contents of retained austenite in the matrix. Both effects have a strong influence on the implant hardness and must be considert by the rule of mixture. Regarding the geometrical response it was pointed out that protruded microfeatures with heights up to 10 µm can be created. In comparison to laser remelted zones, the implanted zones showed significantly altered weld pool profiles due to the influence of the particles on the melt convection. A transition of the implant shape from predominantly dome-shaped to predominantly ring-shaped was observed for intensities >1.7∙106 W/cm2 due to the onset of the keyhole effect. KW - Laser implantation KW - Surface texturing KW - TaC KW - Tantalum carbide KW - Hot-Stamping KW - X38CrMoV5-3 KW - Localized Laser Dispersing PY - 2019 U6 - https://doi.org/10.1007/s40516-019-00106-x SN - 2196-7229 VL - 2019 IS - First Online SP - 1 EP - 22 PB - Springer Nature Switzerland AG. Part of Springer Nature. AN - OPUS4-50041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schirdewahn, S. A1 - Spranger, Felix A1 - Hilgenberg, Kai A1 - Merklein, M. T1 - Tribological performance of localized dispersed X38CrMoV5-3 surfaces for hot stamping of Al-Si coated 22MnB5 sheets N2 - Over the last years, the weight of modern car bodies has risen significantly due to the increasing customers’ demand for comfort and safety equipment. However, this ongoing trend leads to an increasing fuel consumption and thus to higher carbon dioxide emissions. In order to counteract these problems, hot stamping has been established in the automotive industry as a key technology for lightweight construction, regarding the manufacturing of safety-relevant car body components. Hot stamped parts are commonly made out of boron-manganese steel 22MnB5, which is initially austenized and subsequently formed and quenched in one process step. As a result, geometrical complex structures with an ultimate tensile strength of 1500 MPa are generated. The surfaces of the workpieces are coated with an Al-Si layer to avoid oxide scale formation and to ensure corro-sion protection. However, the coating system leads to an increased adhesive wear on the tool sur-face due to the high thermo-mechanical tool stresses. Therefore, a time and cost consuming rework of the hot stamping tools is required. The aim of this study is to increase the tribological perfor-mance of hot stamping tools by using a laser implantation process. This technique allows the ma-nufacturing of separated, elevated and dome-shaped microstructures on the tool surface in conse-quence of a localized dispersing of hard ceramic particles by pulsed laser radiation. The generated surface features offer great potential for reducing the tribological load, due to their high hardness and wear resistance. For this purpose, the friction coefficient of unmodified and laser implanted tool surfaces were examined and compared by using a modified pin-on-disk test. In addition, the surfaces were analyzed by optical measurements in order to quantify the amount of wear. T2 - 7th International Conference on Hot Sheet Metal Forming of High-Performance Steel CHS2-2019 CY - Lulea, Sweden DA - 02.06.2019 KW - Laser implantation KW - Surface texturing KW - Hot stamping PY - 2019 AN - OPUS4-48323 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fritzsche, André A1 - Hilgenberg, Kai A1 - Rethmeier, Michael T1 - Influence of welding parameters on electromagnetic supported degassing of die-casted and wrought aluminum N2 - The paper describes a systematic investigation of the EM influenced laser beam welding of the aluminum die casting alloy AlSi12(Fe) in comparison to a reference material, a wrought aluminum alloy AlMg3. By using of a face centred CCD test plan, the influencing variables laser power, welding velocity and magnetic flux density are varied with regard to their influence on the remaining porosity. The global pore fraction of the weld seams was analyzed by X-ray images with ImageJ. This enabled a qualitatively very good regression model to be derived for the respective material, which identifies the dominant influencing variables. The results prove, statistically verified, for the investigated parameter range, that - the magnetic flux density is the main cause for the porosity reduction, - the porosity rises with increasing laser power the porosity in the weld seams rises, - the influence of the welding velocity is negligible, - the pore quantity in wrought alloy is more strongly minimized by the magnetic flux density than in die casting, - the porosity decreases due to the EM influence by approx. 70 % compared to the unaffected welds. This effect is emphasized by the contour line charts, which illustrate the relationship between laser power and magnetic flux density. With the exception of the quadratic influence of B at the wrought alloy, the statistical correlation shows a linear development of the respective influence variables for both aluminum alloys. In order to investigate these deviations, further simulations with a focus on weld pool geometry and weld pool flow are to be performed. In addition, the welding results can be classified in accordance with DIN EN ISO 13919-2 in the highest evaluation group B for AlMg3 and in evaluation group C for AlSi12(Fe) by applying a magnetic flux density of 350 mT. The analysis of the CT images at constant laser power and welding velocity allows a direct comparison both between the two alloys and also as a function of the magnetic flux density with regard to the number and size of pores. An increase in the magnetic flux density leads to a significant decrease in the number and volume of pores, which can be seen more clearly in wrought alloy than in die casting. Very acceptable results can be achieved for both materials and different welding parameters. This successfully demonstrates the desired process robustness and functionality of the EM system for practical applications. For subsequent investigations of overlap joints, the lowest possible laser power and a high magnetic flux density are recommended. T2 - 38th International Congress on Applications of Lasers & Electro-Optics CY - Orlando, FL, USA DA - 07.10.2019 KW - AISI D2 KW - Laser implantation KW - Surface texturing KW - TiB2 PY - 2019 SN - 978-1-940168-1-42 SP - Paper Macro 1202 AN - OPUS4-50009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Hilgenberg, Kai A1 - Spranger, Felix T1 - Localized laser surface treatments of metals: State of the art and new developments N2 - Localized laser surface treatments are able to produce tailor-made surface properties to fulfill requirements of a variety of technical applications. Especially micrometric surface topologies can be beneficial for optimizing tribological contact situations. Structures with lowered surface features are already utilized for bearings or cylinders of combustion engines. There are also other fields of application, where the potential of protruding surface features is known, e. g. for metal forming tools. A promising approach for a tailored surface treatment working in the microsecond range is the localized dispersing of hard ceramic particles by pulsed laser radiation, the so-called laser implantation. This technique is able to produce micrometric surface structures and to improve simultaneously the wear resistance by creating metal matrix composites. In this talk, the laser implantation technique is described and compared to the state of the art. The potential to adjust the geometry as well as the mechanical properties of laser implanted surfaces is demonstrated by means of microstructural and topographical investigations of different ceramic materials and steel substrates. Finally, results of research projects are presented aiming on the application of such structured surfaces. Their capability to change and optimize friction and wear are demonstrated for fully lubricated contacts, tools for hot sheet metal forming and tools for cold rolling of sheets for automotive applications. T2 - 10th International Conference on Laser Applications (ICLA 10) CY - Cairo, Egypt DA - 23.11.2019 KW - Tool steel KW - Laser implantation KW - Laser surface texturing KW - Laser dispersing PY - 2019 AN - OPUS4-49959 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -