TY - JOUR A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Experimental and numerical study on the influence of the laser hybrid parameters in partial penetration welding on the solidification cracking in the weld root JF - Welding in the World N2 - In this study, the influence of the welding speed, the arc power, and the laser focal position on the solidification crack formation for partial penetration laser hybrid–welded thick-walled plates was investigated. The solidification cracking in the weld root is a result of interaction between metallurgical and geometrical and thermomechanical factors. Experimentally, a direct correlation between the welding speed and the crack number was observed. That is by reducing the welding velocity, the crack number was decreased. The focal position shows also a significant influence on the crack number. By focusing the laser on the specimen surface, the crack number has been significantly diminished. The wire feed speed showed a very slight influence on the crack formation. That is due to the large distance between the critical region for cracking and the arc region. The numerical model shows a high stress concentration in the weld root for both components (vertical and transversal). Numerically, the reduced welding speed showed a strong impact on stress, as the model demonstrated a lower stress amount by decreasing the welding speed. The metallurgical factors, such as the assumed accumulation of the low-melting eutectics in the weld root, should be a contribution for solidification cracking, where the tensile stress is acting. KW - Laser hybrid welding KW - Solidification cracking KW - Partial penetration welding KW - Weld root KW - Numerical simulation PY - 2020 DO - https://doi.org/10.1007/s40194-020-00847-w VL - 64 SP - 501 EP - 511 PB - Springer AN - OPUS4-50625 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Investigation of the gap bridgeability at high-power laser hybrid welding of plasma-cut thick mild steels with AC magnetic support JF - IOP Journal of Physics: Conference Series N2 - One of the challenges of the high-power hybrid laser welding of thick steels is the sensitivity of the process of the process to manufacturing tolerances. This usually leads to a time-consuming preparation of the welding edges, such as milling. The study deals with the influence of the edge quality of milled and plasma-cut steel made of S355J2 with a wall thickness of 20 mm on the laser hybrid welded seam quality. Furthermore, the gap bridgeability and the tolerances towards edge misalignment was investigated. An AC magnet was used as backing support to prevent sagging and positioned under the workpiece, to generate an upwards directed electromagnetic pressure. The profiles of the edges and the gap on the top and root side were measured using a digital camera. Single-pass laser hybrid welds of plasma-cut edges could be welded using a laser beam power of just 13.7 kW. A gap bridgeability up to 2 mm and misalignment of edges up to 2 mm could be achieved successful. Additionally, the independence of the cutting side and the welding side was shown, so that samples were welded to the opposite side to their cutting. For evaluation of internal defects or irregularities, X-ray images were carried out. Charpy impact strength tests were performed to determine the toughness of the welds. T2 - X International Conference «Beam Technologies & Laser Application» KW - Laser hybrid welding KW - Magnetic bath support KW - Plasma-cut samples KW - Thick plate welding PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539248 DO - https://doi.org/10.1088/1742-6596/2077/1/012007 VL - 2077 IS - 012007 SP - 1 EP - 8 PB - IOP Publishing AN - OPUS4-53924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rethmeier, Michael A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey T1 - Welding of thick metal plates with laser - Where are the limits? N2 - -With modern high-power lasers (and vacuum) penetration around 100 mm is possible -Important for industrial applications: single-pass full penetration welds with tolerances -Contactless EM-backing helps to overcome many main restrictions: -Single-pass HLAW of up to 30 mm can be realized with 20 kW laser power -Increase of the gap bridgeability and misalignement of edges -Lower sensitivity to manufacturing tolerances and edge quality; samples can be prepared by a plasma-cut instead of time-consuming milling process -Gives the possibility to increase the welding parameter window and cooling rate so that the required mechanical properties can be reached -Improved filler wire mixing behaviour T2 - AKL22 - International Laser Technology Congress CY - Aachen, Germany DA - 04.05.2022 KW - Laser hybrid welding KW - Thick-walled steel KW - High-power laser KW - Electromagnetic backing PY - 2022 AN - OPUS4-56367 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Improvement of Charpy impact toughness by using an AC magnet backing system for laser hybrid welding of thick S690QL steels JF - Procedia CIRP N2 - The study deals with the influence of the heat input and the resulting cooling times on the microstructure and Charpy impact toughness of single-pass laser hybrid welded 20-mm thick high-strength steel S690QL. The main focus is on the change of the mechanical properties over the entire seam thickness. The cooling times were measured in-situ using a pyrometer and an optical fibre in three different depths of the seam where Charpy impact test specimens were also later taken. Thereby, three different heat inputs from 1.3 kJ/mm to 2 kJ/mm were investigated. Despite the observed decreased values of both t8/5-cooling time and the Charpy impact toughness in the root part of the seam, the required impact toughness of 38 J/cm2 could be reached in dependance on applied heat input, especially at the heat input of 1.6 kJ/mm. T2 - 12th CIRP conference on photonic technologies [lane 2022] CY - Fürth, Germany DA - 04.09.2022 KW - Thick-plate welding KW - Laser hybrid welding KW - Electromagnetic backing KW - Charpy impact toughness KW - Thermal cycles PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-563731 DO - https://doi.org/10.1016/j.procir.2022.08.067 VL - 111 SP - 462 EP - 465 PB - Elsevier B.V. AN - OPUS4-56373 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -