TY - CONF A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical study on the formation of a bulging region in partial penetration laser beam welding T2 - Mathematical Modelling of Weld Phenomena 13 N2 - A transient three-dimensional thermo-fluid dynamics numerical model was developed to study the formation of a bulging region in partial penetration laser beam welding. The model accounts for the coupling between the fluid flow, the heat transfer, and the keyhole dynamics by considering the effects of multiple reflections and Fresnel absorption of the laser beam in the keyhole, the phase transitions during melting and evaporating, the thermo-capillary convection, the natural convection, and the phase-specific and temperature-dependent material properties up to the evaporation temperature. The validity of the model was backed up by experimentally obtained data, including the drilling time, the weld pool length, the local temperature history outside the weld pool, the process efficiency, and a range of metallographic crosssections. The model was applied for the cases of partial penetration laser beam welding of 8 mm and 12 mm thick unalloyed steel sheets. The obtained experimental and numerical results reveal that the bulging region forms transiently depending on the penetration depth of the weld, showing a tendency to transition from a slight bulging to a fully developed bulging region between penetration depths of 6 mm and 9 mm, respectively. T2 - 13th International Seminar "Numerical Analysis of Weldability" CY - Seggau, Austria DA - 04.09.2022 KW - Laser beam welding KW - Deep penetration KW - Bulge formation KW - Numerical modeling PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 101 EP - 126 PB - Verlag der Technischen Universität Graz AN - OPUS4-58802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Kising, Pascal A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Rethmeier, Michael T1 - Numerical analysis of the dependency of the weld pool shape on turbulence and thermodynamic activity of solutes in laser beam welding of unalloyed steels T2 - Mathematical Modelling of Weld Phenomena 13 N2 - A three-dimensional numerical model was developed to accurately predict the steady-state weld pool shape in full penetration laser beam welding. The model accounts for the coupling between the heat transfer and the fluid dynamics by considering the effects of solid/liquid phase transition, thermo-capillary convection, natural convection, and phase-specific and temperature-dependent material properties up to the evaporation temperature. A fixed right circular cone was utilized as a keyhole geometry to consider the heat absorbed from the laser beam. The model was used to analyze the influence of the thermodynamic activity of solutes and turbulence on the weld pool shape. A mesh sensitivity analysis was performed on a hybrid mesh combining hexahedral and tetrahedral elements. For the case of full penetration laser beam welding of 8 mm thick unalloyed steel sheets, the dependence of the weld pool shape on the surface-active element sulfur was found to be negligible. The analysis of the results showed that a laminar formulation is sufficient for accurately predicting the weld pool shape since the turbulence has a minor impact on the flow dynamics in the weld pool. The validity of the numerical results was backed up by experimental measurements and observations, including weld pool length, local temperature history, and a range of metallographic crosssections. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Weld pool shape KW - Numerical modeling KW - Laser beam welding KW - Thermo-capillary convection KW - Turbulence PY - 2023 SN - 978-3-85125-968-1 SN - 978-3-85125-969-8 SN - 2410-0544 VL - 13 SP - 161 EP - 188 PB - Verlag der Technischen Universität Graz AN - OPUS4-58803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Numerical analysis of the influence of an auxiliary oscillating magnetic field on suppressing the porosity formation in deep penetration laser beam alloys of aluminum alloys T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The contactless magnetohydrodynamic technology has been considered as a potential and promising method to improve the weld qualities of deep penetration laser beam welding. In this paper, numerical investigations are conducted to study the influence of the auxiliary oscillating magnetic field on the porosity suppression in laser beam welding of 5754 aluminum alloy. To obtain a deeper insight into the suppression mechanism, a three-dimensional transient multi-physical model is developed to calculate the heat transfer, fluid flow, keyhole dynamic, and magnetohydrodynamics. A ray tracing algorithm is employed to calculate the laser energy distribution on the keyhole wall. A time-averaged downward Lorentz force is produced by an oscillating magnetic field. This force acts in the molten pool, leading to a dominant downward flow motion in the longitudinal section, which blocks the bubble migration from the keyhole tip to the rear part of the molten pool. Therefore, the possibility for the bubbles to be captured by the solidification front is reduced. The electromagnetic expulsive force provides an additional upward escaping speed for the bubbles of 1 m/s ~ 5 m/s in the lower and middle region of the molten pool. The simulation results are in a good agreement with experimental measurements. Based on the results obtained in this study, a better understanding of the underlying physics in laser beam welding enhanced by an auxiliary oscillating magnetic field can be provided and thus the welding process can be further optimized reducing the porosity formation. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Deep penetration laser beam welding KW - Oscillating magnetic field KW - Numerical simulation KW - Porosity KW - Molten pool behaviour PY - 2023 SN - 2410-0544 VL - 13 SP - 237 EP - 254 PB - Verlag der Technischen Universität Graz AN - OPUS4-58804 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Wu, Chuansong A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of ultrasonic vibration enhanced friction stir welding of dissimilar Al/Mg alloys T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The ultrasonic vibration enhanced friction stir welding (UVeFSW) process has unique advantages in joining dissimilar Al/Mg alloys. While there are complex coupling mechanisms of multi-fields in the process, it is of great significance to model this process, to reveal the influence mechanism of ultrasonic vibration on the formation of Al/Mg joints. In this study, the acoustic-plastic constitutive equation was established by considering the influence of both ultrasonic softening and residual hardening on the flow stress at different temperatures and strain rates. And the ultrasonic induced friction reduction (UiFR) effect on friction coefficient in different relative directions at the FSW tool-workpiece interface was quantitatively calculated and analyzed. The Al/Mg UVeFSW process model was developed through introducing the above acoustic effects into the model of Al/Mg friction stir welding (FSW). The ultrasonic energy is stronger on the aluminum alloy side. In the stirred zone, there is the pattern distribution of ultrasonic sound pressure and energy. The heat generation at the tool-workpiece contact interface and viscous dissipation were reduced after applying ultrasonic vibra-tion. Due to the UiFR effect, the projection of friction coefficient and heat flux distributions at the tool-workpiece interface present a "deformed" butterfly shape. The calculated results show that ultrasonic vibra-tion enhanced the material flow and promoted the mixing of dissimilar materials. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Friction stir welding KW - Ultrasonic vibration KW - Al/Mg alloys KW - Numerical simulation PY - 2023 SN - 2410-0544 VL - 13 SP - 517 EP - 538 PB - Verlag der Technischen Universität Graz AN - OPUS4-58805 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - A numerical study on the suppression of a detrimental weld pool profile in wire feed laser beam welding by magnetohydrodynamic technique T2 - Mathematical Modelling of Weld Phenomena 13 N2 - The weld quality and the possible defect formation are directly determined by the weld pool shape and the thermo-fluid dynamics therein. In this paper, an untypical weld pool profile, i.e., elongated at its top and bottom but narrowed at the middle, is found experimentally and numerically in the wire feed laser beam welding. The detrimental influence of the weld pool narrowing on the element transport is analyzed and discussed. A magnetohydrodynamic technique is utilized to suppress the narrowing, aiming at a more homogenous element distribution. It is found that a low-temperature region is formed in the middle of the weld pool due to the interaction of the two dominant circulations from the top and bottom regions. The weld pool is significantly narrowed due to the untypical growth of the mushy zone in the low-temperature region, which results in a direct blocking effect on the downward flow and the premature solidification in the middle region. The Lorentz force produced by a transverse oscillating magnetic field shows the potential to change the flow pattern into a single-circulation type and the low-temperature-gradient region is mitigated. Therefore, the downward transfer channel is widened, and its premature solidification is prevented. The numerical results are well validated by experimental measurements of metal/glass observation and X-ray fluorescence element mapping. T2 - 13th International Seminar Numerical Analysis of Weldability CY - Seggau, Austria DA - 04.09.2022 KW - Thermo-fluid flow KW - Element transport KW - Laser beam welding KW - Magnetohydrodynamics KW - Multi - physical modeling PY - 2023 SN - 2410-0544 VL - 13 SP - 143 EP - 160 PB - Verlag der Technischen Universität Graz AN - OPUS4-58806 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Chunliang A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Experimental and numerical study on grain refinement in electromagnetic assisted laser beam welding of 5754 al alloy T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - Through experimental observation and auxiliary numerical simulation, this investigation studies the different types of grain refinement of 5754 aluminum alloy laser beam welding by applying a transverse oscillating magnetic field. Scanning electron microscope results have proved that the application of a magnetic field can reduce the average crystal branch width and increase its number. The interaction between the induced eddy current generated by the Seebeck effect and the applied external magnetic field produces a Lorentz force, which is important for the increase of the number of crystal branches. Based on the theory of dendrite fragmentation and the magnetic field-induced branches increment, the grain size reduction caused by the magnetic field is studied. Furthermore, the effects of the magnetic field are analyzed by combining a phase field method model and simulations of nucleation and grain growth. The grain distribution and average grain size after welding verifies the reliability of the model. In addition, the introduction of a magnetic field can increase the number of periodic three-dimensional solidification patterns. In the intersection of two periods of solidification patterns, the metal can be re-melted and then re-solidified, which prevents the grains that have been solidified and formed previously from further growth and generates some small cellular grains in the new fusion line. The magnetic field increases the building frequency of these solidification structures and thus promotes this kind of grain refinement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - Magnetic field KW - Crystal branch development KW - Grain refinement KW - Periodic solidification pattern PY - 2023 SP - 1 EP - 10 AN - OPUS4-58809 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Yang, Fan A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Rethmeier, Michael T1 - Numerical analysis of the effect of the metal vapor plume on the keyhole and the molten pool behavior during deep penetration laser beam welding T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - The effect of the oscillating metal vapor plume on the keyhole and molten pool behavior during the laser beam welding of AlMg3 aluminum alloys is investigated by the experimental and numerical method. The real-time height of the metal vapor plume is measured by high-speed camera observation. The obtained experimental results are used to evaluate the additional heating source and laser beam attenuation caused by the scattering and absorption based on the Beer-Lambert theory. Furthermore, the dynamic behavior of the metal vapor plume is incorporated into a 3D transient heat transfer and fluid flow model, coupled with the ray tracing method, for the laser beam welding of the AlMg3 alloy. It is found that the additional heating resulting from the scattered and absorbed laser beam energy by the metal vapor plume significantly expands the shape of the molten pool on the top region. Moreover, the oscillating metal vapor plume caused the fluctuation of the molten pool shape. The probability of keyhole collapse at the bottom increases significantly to 72% due to the oscillating laser power induced by the laser beam attenuation. The internal interplay between the metal vapor plume, molten pool shape, and the keyhole collapse are obtained. The developed model has been validated by the experiments, which shows a good agreement. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, Illinois, USA DA - 16.10.2023 KW - Deep penetration laser beam welding KW - Numerical simulation KW - Oscillating vapor plume KW - Keyhole collapse PY - 2023 SP - 1 EP - 10 AN - OPUS4-58841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Srinivasan, Krishnanand A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Laser Metal Deposition of Rene 80 – Microstructure and Solidification Behaviour Modelling T2 - Lasers in Manufacturing Conference 2023 N2 - New developments in nickel-based superalloys and production methods, such as the use of additive manufacturing (AM), can result in innovative designs for turbines. It is crucial to understand how the material behaves during the AM process to advance industrial use of these techniques. An analytical model based on reaction-diffusion formalism is developed to better explain the solidification behavior of the material during laser metal deposition (LMD). The well-known Scheil-Gulliver theory has some drawbacks, such as the assumption of equilibrium at the solid-liquid interface, which is addressed by this method. The solidified fractions under the Scheil model and the pure equilibrium model are calculated using CALPHAD simulations. Differential scanning calorimeter is used to measure the heat flow during the solid-liquid phase transformation, the result of which is further converted to solidified fractions. The analytical model is compared with all the other models for validation. T2 - Lasers in Manufacturing Conference 2023 CY - Munich, Germany DA - 26.06.2023 KW - Additive manufacturing KW - Laser metal deposition KW - Solidification behaviour KW - Analytical model KW - Nickel-based superalloy PY - 2023 SP - 1 EP - 10 AN - OPUS4-58612 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Rethmier, Michael T1 - Influence of the spatial laser energy absorption on the molten pool dynamics in high-power laser beam welding T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - The spatial laser energy absorption inside the keyhole is decisive for the dynamic molten pool behaviors and the resultant weld properties in high-power laser beam welding (LBW). In this paper, a numerical simulation of the LBW process, considering the 3D transient heat transfer, fluid flow, and keyhole dynamics, is implemented, in which the free surface is tracked by the volume-of-fluid algorithm. The underlying laser-material interactions i.e., the multiple reflections and Fresnel absorption, are considered by an advanced ray-tracing method based on a localized Level-Set strategy and a temperature-dependent absorption coefficient. The laser energy absorption is analyzed from a time-averaged point of view for a better statistical representation. It is found for the first time that a noticeable drop of the time-averaged laser energy absorption occurs at the focus position of the laser beam, and the rest region of the keyhole has relatively homogenous absorbed energy. This unique absorption pattern may lead to a certain keyhole instability and have a strong correlation with the detrimental bulging and narrowing phenomena in the molten pool. The influence of the different focus positions of the laser beam on the keyhole dynamics and molten pool profile is also analyzed and compared. The obtained numerical results are compared with experimental measurements to assure the validity of the proposed model. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - laser energy absorption KW - molten pool KW - keyhole dynamics KW - numerical modeling PY - 2023 SP - 1 EP - 8 AN - OPUS4-58754 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Rethmeier, Michael T1 - Challenges in dynamic heat source modeling in high-power laser beam welding T2 - Proceedings of the ICALEO 2023, 42ndt International Congress on Applications of Lasers & Electro-Optics N2 - The amount of absorbed energy in the keyhole as well as its spatial and temporal distribution is essential to model the laser beam welding process. The recoil pressure, which develops because of the evaporation process induced by the absorbed laser energy at the keyhole wall, is a key determining factor for the macroscopic flow of the molten metal in the weld pool during high-power laser beam welding. Consequently, a realistic implementation of the effect of the laser radiation on the weld metal is crucial to obtain reliable and accurate simulation results. In this paper, we discuss manyfold different improvements on the laser-material interaction, namely the ray-tracing method, in the numerical simulation of the laser beam welding process. The first improvement relates to locating the exact reflection points in the ray tracing method using a so-called cosine condition in the determination algorithm for the intersection of the reflected rays and the keyhole surface. A second correction refers to the numerical treatment of the Gaussian distribution of the laser beam, whose beam width is defined by a decay of the laser intensity by a factor of 1/e2 thus ignoring around 14 % of the total laser beam energy. In a third step, the changes in the laser radiation distribution in the vertical direction were adapted by using different approximations for the converging and the diverging regions of the laser beam thus mimicking the beam caustic. Finally, a virtual mesh refinement was adopted in the ray tracing routine. The obtained numerical results were validated with experimental measurements. T2 - International Congress of Applications of Lasers & Electro-Optics 2023 CY - Chicago, USA DA - 16.10.2023 KW - Laser beam welding KW - Laser energy distribution KW - Ray tracing KW - Numerical modeling PY - 2023 SP - 1 EP - 10 AN - OPUS4-58475 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -