TY - CONF A1 - Bachmann, Marcel A1 - Meng, Xiangmeng A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - Evaluation of narrowed weld pool shapes and their effect on resulting potential defects during deep penetration laser beam welding N2 - This study presents mechanisms of the evolution of a narrowed region in the weld pool center during deep penetration laser beam welding. In numerous numerical studies presented in this study, it was also found that the local reduction of the weld pool size can cause detrimental effects on the melt flow behavior and the resulting properties of the welds. A particularly large influence of this effect was identified in three aspects. Firstly, the local variation of the solidification sequence of the weld pool causes an increase in the hot-cracking susceptibility due to a locally delayed solidification. Secondly, it was proven that a change in the local length and width of the weld pool is associated with an adverse impact on the potential flow routes of the molten material that induces stronger local variations of its solidification. Thus, the element mixing, e.g. during the welding with filler materials, is blocked. This leads to a non-homogeneous chemical composition of the final weld and can cause undesired effects on the final material properties. Finally, another observed effect is related to the reduced ability of process pores to reach the top surface. As this type of porosity is usually produced around the keyhole tip, the change of the fluid flow regime above this area plays a significant role in determining the final path of the pores until the premature solidification in the middle of the weld pool captures them. This study summarizes mainly numerical results which were supported by selected experimental validation results. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Weld pool shape KW - Laser beam welding KW - Solidification KW - Porosity KW - Numerical process simulation PY - 2022 SP - 1 AN - OPUS4-56532 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Meng, Xiangmeng A1 - Putra, Stephen Nugraha A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Rethmeier, Michael T1 - The influence of the free surface reconstruction on the spatial laser energy distribution in high power laser beam welding modeling N2 - An accurate and efficient description of the spatial distribution of laser energy is a crucial factor for the modeling of laser material processing, e.g., laser welding, laser cutting, or laser-based additive manufacturing. In this study, a 3D heat transfer and fluid flow model coupled with the volume-of-fluid algorithm for free surface tracking is developed for the simulation of molten pool dynamics in high-power laser beam welding. The underlying laser-material interactions, i.e., the multiple reflections and Fresnel absorption, are considered by a ray-tracing method. Two strategies of free surface reconstruction used in the ray-tracing method are investigated: a typical piecewise linear interface calculation (PLIC)-based method and a novel localized Level-Set method. The PLIC-based method is discrete, resulting in non-continuous free surface reconstruction. In the localized Level-Set method, a continuous free surface is reconstructed, and thus the exact reflection points can be determined. The calculated spatial laser energy distribution and the corresponding molten pool dynamics from the two methods are analyzed and compared. The obtained numerical results are evaluated with experimental measurements to assure the validity of the proposed model. It is found that distinct patterns of the beam multiple reflections are obtained with the different free surface reconstructions, which shows significant influence not only on the molten pool behaviors but also on the localized keyhole dynamics. T2 - International Congress of Applications of Lasers & Electro-Optics 2022 CY - Orlando, FL, USA DA - 17.10.2022 KW - Laser beam welding KW - laser energy distribution KW - Weld pool dynamics KW - Ray-tracing PY - 2022 SP - 1 EP - 9 AN - OPUS4-56533 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Üstündag, Ömer A1 - Bakir, Nasim A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Thermal Cycles and Charpy Impact Toughness of Single-Pass Hybrid Laser-Arc Welded Thick-Walled Structures N2 - The study deals with the influence of the heat input on the thermal cycles and Charpy impact toughness for hybrid laser-arc welding of 25 mm thick structural steel S355J2 using a 20-kW high-power laser in combination with an electromagnetic weld pool support. The main focus is on the change of the mechanical properties over the entire seam thickness. The cooling times were measured using a pyrometer in combination with an optical fibre in three different locations near to fusion lines corresponding to different heights of the seam. Also, Charpy impact specimens were taken from different parts of the weld joint corresponding to the different heights. The influence of the heat input was investigated for 1.8 kJ mm-1 and 3.2 kJ mm-1. Despite the observed decreased values of both t8/5-cooling time and the Charpy impact toughness in the root part of the seam, the required values could be reached in dependance on applied heat input. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - laser hybrid welding KW - Charpy impact toughness KW - thick plate welding KW - thermal cycles PY - 2021 SP - 1 EP - 8 AN - OPUS4-53926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Müller, V. A1 - Marko, A. A1 - Kruse, T. A1 - Biegler, M. A1 - Rethmeier, Michael T1 - Analysis and recycling of bronze grinding waste to produce maritime components using directed energy deposition N2 - Additive manufacturing promises a high potential for the maritime sector. Directed Energy Deposition (DED) in particular offers the opportunity to produce large-volume maritime components like propeller hubs or blades without the need of a costly casting process. The post processing of such components usually generates a large amount of aluminum bronze grinding waste. The aim of the presented project is to develop a sustainable circular AM process chain for maritime components by recycling aluminum bronze grinding waste to be used as raw material to manufacture ship Propellers with a laser-powder DED process. In the present paper, grinding waste is investigated using a dynamic image Analysis system and compared to commercial DED powder. To be able to compare the material quality and to verify DED process parameters, semi-academic sample geometries are manufactured. T2 - LiM 2021 CY - Munich, Germany DA - 21.06.2021 KW - Additive Manufacturing KW - Maritime Components KW - Powder Analysis KW - Recycling KW - Directed Energy Deposition PY - 2021 SP - 1 EP - 9 AN - OPUS4-54067 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Heßmann, Jennifer A1 - Bachmann, Marcel A1 - Hilgenberg, Kai T1 - Joining dissimilar materials a new approach based on laser beam welding and melt displacement by electromagnetic forces N2 - In order to reduce weight of vehicles, the interest in multi-material-design has been growing within the last few years. For vehicles the combination of steel and aluminium alloys offers the most promising compromise between weight, strength and formability. Thermal joining of these dissimilar materials is still a challenge to overcome. A possible approach is a new joining technology, whereby a combination of laser beam welding and contactless induced electromagnetic forces are used to displace the generated melt of one joining partner into a notch of the other. This paper presents the working principle and shows numerical analyses to improve the understanding of this joining process. The simulations help to calculate the thermal development of the joining partners, which is important for the formation of intermetallic phases. Furthermore, the calculation of the time required for a complete displacement is possible. The numerical results are validated by experimental results. T2 - LiM 2021 CY - Online meeting DA - 21.06.2021 KW - Joining dissimilar materials KW - Laser beam welding KW - Electromagnetic forces KW - Steel and aluminium PY - 2021 SP - 1 EP - 9 PB - Wissenschaftliche Gesellschaft Lasertechnik e.V. (WLT) AN - OPUS4-52978 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bakir, Nasim A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Observation of the weld pool shape in partial penetration welding and its influence on solidification crack formation for high-power laser beam welding N2 - In this study, steel-glass experiments were conducted to observe the melt pool geometry using a high-speed camera. The high-speed recordings and optical flow analysis show that two main flows take place in form of vortices. The lower vortex drives the melt backwards from the front keyhole wall and thus causes an extension of the melt pool, which is called bulging. This bulging promotes solidification cracking by forming a closed area filled with melt and the accumulation of impurities in the final solidification phase, resulting in low-melting phases which are under tensile stress at the end of solidification. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Laser beam welding KW - Weld pool shape KW - Solidification craking KW - Partial penetration PY - 2021 SP - 1 EP - 5 AN - OPUS4-53587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bachmann, Marcel A1 - Artinov, Antoni A1 - Meng, Xiangmeng A1 - Rethmeier, Michael T1 - Numerical study of the bulging effect in deep penetration laser beam welding N2 - This article is devoted to the study of the bulging effect in deep penetration laser beam welding. The numerical results of the investigations are based upon experimental results from previous studies to reveal the relationship between the bulging effect and the hot cracking formation, as well as the mixing of alloying elements in the weld pool. The widening of the molten pool in its center area can be observed in full penetration as well as in partial penetration welds on 8 mm and 12 mm thick structural steel plates, respectively. The weld pool shape is extracted from the simulations to evaluate the extent of the necking of the solidification line as well as the bulging phenomena and its influence on the hot cracking phenomena. Relying on an earlier numerical study utilizing a fixed keyhole, simulation models considering a dynamic keyhole are developed thereto. Additionally, the mixing behavior of alloying elements during partial penetration is investigated. The link between the bulge and the studied phenomena is found to be significant. T2 - Lasers in Manufacturing Conference 2021 CY - Online meeting DA - 21.06.2021 KW - Deep penetration laser beam welding KW - Welding simulation KW - Solidification cracking KW - Bulging effect PY - 2021 SP - 1 EP - 8 AN - OPUS4-52848 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Petrat, T. A1 - Graf, B. A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael T1 - Build-up Strategies for Laser Metal Deposition in Additive Manufacturing N2 - Laser Metal Deposition (LMD) as a technology for additive manufacturing allows the production of large components outside of closed working chambers. Industrial applications require a stable process as well as a constant deposition of the filler material in order to ensure uniform volume growth and reproducible mechanical properties. This paper deals with the influence of travel path strategies on temperature profile and material deposition. Meandering and spiral hatching strategies are used in the center as well as in the edge of a specimen. The temperature is measured with thermocouples attatched to the backside of the specimen. The tests are carried out on the materials S235JR and 316L. The results show a strong dependence of the maximum temperatures on the travel path strategy and the welding position on the component. T2 - Fraunhofer Direct Digital Manufacturing Conference (DDMC) CY - Berlin, Germany DA - 14.03.2018 KW - Additive Manufacturing KW - Temperature behavior KW - Laser Metal Deposition KW - Stainless Steel KW - 316L KW - Edge effects PY - 2018 SN - 978-3-8396-1320-7 VL - 1 SP - 1 EP - 6 PB - Fraunhofer-Gesellschaft CY - München AN - OPUS4-44719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Straße, Anne A1 - Üstündag, Ömer A1 - Gumenyuk, Andrey A1 - Rethmeier, Michael ED - Schmidt, M. ED - Vollertsen, F. ED - Govekar, E. T1 - LMD coatings as filler material for laser beam welded 30 mm thick plates N2 - The development of high energy laser sources enables single-pass welds of thick plates up to 30 mm, but often additional materials are needed to influence the properties of the weld seams. However, the homogenous distribution of filler materials in form of e.g. electrodes is only possible up to 7 mm while the elements are only traceable up to a depth of 14 mm. To overcome this problem a two-step process is used where first the edges of the weld partners are coated with the filler material by laser metal deposition (LMD) and afterwards are welded by laser beam. Single-pass welds with electromagnetic weld pool support of 30 mm thick S355 J2+N-plates with austenitic AISI 316L-coatings were investigated as well as the influence of the coatings to the penetration depth of the laser beam without electromagnetic weld pool support in double-sided joints. The weld seams were tested by X-ray inspection and cross sections. T2 - 11th CIRP Conference on Photonic Technologies [LANE 2020] CY - Online meeting DA - 07.09.2020 KW - Penetration depth KW - Laser metal deposition (LMD) KW - Laser beam welding KW - Filler material distribution PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-512790 SN - 2212-8271 VL - 94 SP - 293 EP - 297 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-51279 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Javaheri, E. A1 - Pittner, Andreas A1 - Graf, B. A1 - Rethmeier, Michael T1 - Instrumented indentation technique and its application for the determination of local material properties of welded steel structures N2 - The determination of mechanical properties of welded Steel structures such as strength or ductility is a subject of high interest for the majority of Companies in the area of metal Processing. The material Parameters can be obtained by performing the tensile test on the samples made from a part of a component. In some cases, it is highly expensive to produce the tensile specimens especially from the weld metal, which contains different type of microstructure such as weld seam or heat affected zone in an extremely small area. Therefore, a method is described in this paper to determine the material Parameters of high strength Steel structures and welded joints locally and without any additional effort to perform the tensile test. In this method, instrumented indentation technique (IIT), an indenter is pushed on the flat surface of a specimen in a certain period of time and simultaneously the applied force and the corresponding indentation path are measured. The data related to the force-indentation diagram is given as input to an artificial neural network (ANN) to obtain the material Parameters. The ANN can be trained by generating the large qualitative data sets with numerical Simulation of the IIT procedure. The Simulation must be run several times with the different material model parameter sets to generate the numerous force-indentation diagrams as the inputs of ANN. Then, the trained ANN is validated by performing the IIT on the welded joints and comparing the obtained material Parameters from ANN with the tensile test. Consequently, the mechanical properties of welded joints can be determined by performing the IIT and evaluating the resulting data by the ANN. T2 - 39. Assistentenseminar CY - Eupen, Germany DA - 12.09.2018 KW - Steel PY - 2019 SN - 978-396144-070-2 SP - 146 EP - 152 PB - DVS Media GmbH AN - OPUS4-51317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -