TY - CONF A1 - Ávila Calderón, Luis Alexander A1 - Rehmer, Birgit A1 - Graf, B. A1 - Ulbricht, Alexander A1 - Skrotzki, Birgit A1 - Rethmeier, Michael T1 - Low cycle fatigue behavior of DED-L Ti-6AL-4V N2 - Laser powder-based directed energy deposition (DED-L) is a technology that offers the possibility for 3D material deposition over hundreds of layers and has thus the potential for application in additive manufacturing (AM). However, to achieve broad industrial application as AM technology, more data and knowledge about the fabricated materials regarding the achieved properties and their relationship to the manufacturing process and the resulting microstructure is still needed. In this work, we present data regarding the low-cycle fatigue (LCF) behavior of Ti-6Al-4V. The material was fabricated using an optimized DED-L process. It features a low defect population and excellent tensile properties. To assess its LCF behavior two conventionally manufactured variants of the same alloy featuring different microstructures were additionally tested. The strain-controlled LCF tests were carried out in fully reversed mode with 0.3 % to 1.0 % axial strain amplitude from room temperature up to 400°C. The LCF behavior and failure mechanisms are described. For characterization, optical microscopy (OM), scanning electron microscopy (SEM), and micro-computed tomography (µCT) were used. The low defect population allows for a better understanding of the intrinsic material’s properties and enables a fairer comparison against the conventional variants. The fatigue lifetimes of the DED-L material are nearly independent of the test temperature. At elevated test temperatures, they are similar or higher than the lifetimes of the conventional counterparts. At room temperature, they are only surpassed by the lifetimes of one of them. The principal failure mechanism involves multiple crack initiation sites. T2 - Ninth International Conference on Low Cycle Fatigue (LCF9) CY - Berlin, Germany DA - 21.06.2022 KW - AGIL KW - Additive Manufacturing KW - Ti-6Al-4V KW - Low-Cycle-Fatigue KW - Microstructure PY - 2022 AN - OPUS4-55123 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructure-Property-Correlation of a Mo-Ti-B alloyed iron aluminide N2 - Iron aluminides depict a sustainable and light-weight material class which could be employed in many applications requiring high strength at intermediate to high temperatures. According to first results, the alloy Fe-26Al-4Mo-0.5Ti-1B surpasses conventional materials in wet corrosion resistance and creep resistance up to 650 °C. For these reasons, the AiF research project “WAFEAL – Materials applications for iron aluminides” was initiated to transfer these findings into a standardised materials dataset and to derive best practices for processing. In the first place, a set of different microstructures adjusted by varying casting methods, wall thicknesses and heat treatments was investigated and correlated with hardness on macro and micro scale. Correlations were drawn between solidification rates and resulting grain sizes and hardness. The effect of vacancy hardening was only verified for wall thickness as low as 2.5 mm. Moreover, a common decrease of macrohardness after a heat treatment at 1000 °C for 100 h was observed irrespective of casting process or wall thickness. This effect was linked with an unexpected decrease of the complex boride phase fraction which acts as a hardening phase. T2 - Intermetallics 2021 CY - Bad Staffelstein, Germany DA - 04.10.2021 KW - Fe-Al alloys KW - Intermetallics KW - Iron aluminides KW - Heat treatment KW - Wall thickness KW - Centrifugal casting KW - Die casting KW - Investment casting KW - Microstructure KW - Hardness KW - Complex borides PY - 2021 AN - OPUS4-53617 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rabe, Torsten A1 - Schulz, Bärbel A1 - Paulick, C. T1 - Development of ceramic helical springs for sensor applications N2 - At high temperatures and in harsh environments ceramic springs are often superior to metallic ones and allow for innovative solutions. A further application was proposed by using ceramic springs as capacitive force sensor. Lower and upper coil surfaces are coated by electrically conducting layers. Deformation of such spring results in a change of capacity. Sensor application calls for helical springs with rectangular cross-section, a linear stress-strain characteristic over entire deformation range and low manufacturing tolerances relating to inner and outer diameter, coil cross section and spring pitch. Furthermore, complex spring design with integrated connecting elements has to be realized. Alumina, zirconia (Y-TZP) and silicon nitride springs were produced by hard machining starting from sintered hollow cylinders. After external and internal cylindrical grinding the hollow cylinders were filled with hard wax, followed by multi-stage cutting of spring coils with custom-made cutting discs. Finally, hard wax was removed by melting and burnout. Best surface and edge qualities of springs were reached using Y-TZP material and hot isostatic pressed alumina. Y-TZP springs produced with material-specifically selected cutting discs and optimized process parameters show sharp coil edges without spallings and mean roughness values of inner surfaces < 0.2 μm. Manufacturing tolerances of spring diameters, spring pitch, height and width of coil cross section are in the range of ± 10 microns. Good reproducibility of spring geometry by optimized hard machining technology allows for production of Y-TZP springs with spring constants differing less than ± 1 % within a series. According to DIN 2090 spring constant for rectangular coil cross section is proportional to the square of height and width of coil cross section and indirectly proportional to number of active coils and to the cube of the mean spring diameter. Hence, spring constants can be tailored over a range of many orders of magnitude by changing the spring dimensions. Good agreement was reached between calculated target spring constants and measured values on produced springs. Alumina and zirconia springs were characterized relating to deformation behavior under dynamic compression load with various deformation speeds and under static tensile loads over long periods of time. Contrary to alumina springs, a non-linear stress-strain behavior of TZP springs was proved in both test series. It is supposed, that pseudoelasticity caused by stress-induced transformation of tetragonal to monoclinic phase is responsible for this special feature of TZP springs. Therefore, TZP material cannot be used for capacitive spring sensors. T2 - European Ceramic Society Conference (ECerS) CY - Torino, Italy DA - 16.06.2019 KW - Ceramic spring KW - Sensor KW - Spring constant KW - Failure test KW - Microstructure PY - 2019 AN - OPUS4-48610 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Abel, Andreas A1 - Zapala, P. A1 - Michels, H. A1 - Skrotzki, Birgit T1 - Microstructural evolution of Fe-26Al-4Mo-0.5Ti-1B with varying wall thicknesses N2 - With an increasing demand in more efficient fuel consumption to reduce CO2 emissions, weight reductions in high-temperature materials at affordable costs gain increasing attention. One potential candidate is the intermetallic material class of iron aluminides, combining the advantages in mass savings, high temperature performance and recyclability of resources. The alloy Fe-26Al-4Mo-0.5Ti-1B was selected to study the microstructural features evolving from two casting processes, five wall thicknesses and three final conditions. Conclusions are drawn upon the correlations of processing variables, grain sizes and hardness. T2 - DGM Fachausschuss "Intermetallische Phasen" CY - Online meeting DA - 09.02.2021 KW - Intermetallics KW - Iron aluminides KW - Fe-Al alloys KW - Wall thickness KW - Microstructure PY - 2021 AN - OPUS4-52288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Fries, S. G. A1 - Lopez-Galilea, I. A1 - Ruttert, B. A1 - Theissen, W. A1 - Agudo Jácome, Leonardo T1 - Effect of the heat treatment in the microstructure of a refractory chemically complex alloy N2 - A set of some unexpected and interesting microstructures has put the so-called complex concentrated alloys (CCAs) in the eye of the scientific community. The AlMo0.5NbTa0.5TiZr refractory (r)CCA, aimed at substituting Ni-base superalloys in gas turbine applications, belongs to this alloy family. After a two-stage heat treatment, this rCCA morphologically resembles the typical a two-phase microstructure of the latter. The objective of this work consists in determining the effect of the two stages of the heat treatment on the microstructure of the AlMo0.5NbTa0.5TiZr alloy to eventually improve it in terms of homogeneity and porosity. T2 - Third International Conference on High Entropy Materials (2020) CY - Berlin, Germany DA - 27.09.2020 KW - Annealing KW - Hot isostatic pressing KW - Refractory chemically complex alloy KW - Microstructure PY - 2020 AN - OPUS4-53386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Effect of a circular notch on [001] tensile creep behavior of the Ni-base superalloy single crystal LEK 94 at 1020 °C N2 - Ni-base superalloy single crystals have been used in turbine blades for hot sections of gas turbines for over four decades. In order to increase the efficiency of the turbines, a continuous increase in the inlet temperature of combustion gases into the turbine has driven the design of turbine blades to complicated shapes and the presence of a complex pattern of cooling channels. These three-dimensional shapes, together with the inhomogeneous distribution of stresses along the blade, induce an also complicated triaxial stress state, which does not compare to uniaxial tests that are performed to characterize high temperature properties such as creep. A round notch on a test piece represents a simple configuration that generates a quasi-isostatic stress state across the notch. In the present contribution, the effect of a sharp round notch on the microstructural micromechanisms within the notched region cylindrical bars, loaded along [001] at 1020 °C and 160 MPa net stress, is studied. To this end, a series of interrupted creep tests is conducted on plain and notched bars and the microstructure is compared. Results are discussed in terms of degree microstructural coarsening, and dislocation activity. The effect of notch generation via grinding is also discussed in these terms. The presence of carbides evolving in from residual carbon is also shown and discussed. .Funding by the German Research Association (DFG) [grant number AG 191/1] is acknowledge T2 - DGM-Arbeitskreis mechanisches Werkstoffverhalten bei hoher Temperatur CY - Hochschule Augsburg, Germany DA - 20.09.2018 KW - Superalloy single crystals KW - Microstructure KW - Electron microscopy KW - Creep KW - Multiaxial stress state PY - 2018 AN - OPUS4-46050 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo A1 - Suárez Ocaño, Patricia T1 - The Al4-xZr5(Ox-y) Trojan horse in the AlMo0.5NbTiTa0.5Zr refractory high entropy superalloy N2 - Unlike conventional alloys, which typically consist of one main element, high-entropy alloys (HEAs) contain five or more principal elements, which broaden chemical complexity and with it a realm of synergistic mechanisms. The AlMo0.5NbTa0.5TiZr HEA initiated a subclass of Al-containing refractory (r)HEAs that has recently drawn attention [2]. The alloy has a superalloy-resembling B2/bcc nanostructure, which inspired its name refractory high entropy superalloy (RSA). With high-temperature (HT) compressive strengths beyond conventional Ni-based superalloys, this nanostructure could be used for improved HT structural applications. However, in the application-relevant HT regime the Al-Zr-rich B2 phase decomposes to form a hexagonal Al-Zr-based intermetallic (Al4-xZr5; x: 0..1) [3,4]. This work explores the fascinating yet fatal micromechanisms associated to this phase transformation, in the context of creep, annealing and oxidation experiments performed between 800 and 1200 °C. The material was produced by arc-melting and heat treatment in argon, which lead to grain boundaries decorated with up to 7%. Interrupted constant-load creep tests were performed under vacuum (at 10-4 Pa), at 900–1100 °C with external tensile stresses of 30–120 MPa. Oxidation experiments were separately conducted for 24 hours at 800 and 1000 °C in both dry (21% O2 + 79% N2) and humid (8% O2 + 74% N2 + 18% H2O) air. After the experiments, the samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy to reveal degradation mechanisms. Crystallographic texture, orientation relationships and stabilization of an oxygen-containing iso structure (Al4-xZr5(Ox-y); y: 0..x) of the Al-Zr-rich intermetallic are found and discussed. T2 - BCC Superalloy Network Opening Workshop CY - Reutte, Austria DA - 08.02.2024 KW - High entropy alloy KW - Superalloy KW - Degradation KW - Electron microscopy KW - Microstructure PY - 2024 AN - OPUS4-59833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Suárez Ocano, Patricia A1 - Gadelmeier, C. A1 - Gratzel, U. A1 - Agudo Jácome, Leonardo T1 - Creep Properties of the Refractory Chemically Complex AlMo 0.5 NbTa 0.5 TiZr Alloy N2 - The development of refractory CCAs has been explored for potential use in high temperature applications. An example of this is the AlMo0.5NbTa0.5TiZr alloy, which resembles the well-known γ/γ’ microstructure in Ni-Base superalloys with cuboidal particles embedded in a continuous matrix. The aim of this work is to evaluate the alloy’s mechanical behavior under tension in the temperature range 800-1000°C, by applying creep tests under vacuum (excluding oxidation effects). Some little temperature influence on minimum creep rate @ 1000 and 1100 °C was found and at a first glance, and Norton plots shows that deformation is probably both diffusion and dislocation controlled. However, further work is needed to stablish deformation and degradation micro mechanisms in the studied creep regime. T2 - SPP Kick-Off Meeting 2nd Phase CY - Online meeting DA - 14.04.2021 KW - Creep behavior KW - Chemically complex alloy KW - Microstructure PY - 2021 AN - OPUS4-53389 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Agudo Jácome, Leonardo T1 - Navigating the Nanoworld: Understanding Materials Properties with the Transmission Electron Microscope N2 - The field of materials science is defined as “the study of the properties of solid materials and how those properties are determined by a material’s composition and structure.”. Many –if not most– of the materials that are produced nowadays owe their properties to structures engineered down to the nanoscopic level. This need has been partly realized thanks to the understanding of materials’ building blocks via characterization techniques that reach this level of resolution. Transmission electron microscopy, since its first implementation in the early 1930s (in Berlin), has been implemented to achieve imaging –and spectral– analysis at lateral resolutions down to the atomic level. In this contribution, a series of practical examples will be presented, where applied materials are characterized by a range of transmission electron microscopy techniques to understand structural and functional properties of a wide range of materials. Among these materials examples will be presented on structural conventionally and additively manufactured metallic alloys, high entropy alloys, dissimilar aluminum-to-steel welds, magnetic nanoparticles, ceramic coatings, high temperature oxidation products. Addressed will be either the effect of processing route or that of the exposure to experimental conditions similar to those found in the respective intended applications. T2 - UA/UAB/UAH MSE Graduate Seminar CY - Online meeting DA - 19.01.2022 KW - Transmission electron microscopy (TEM) KW - Characterization KW - Microstructure KW - 3D PY - 2022 AN - OPUS4-54238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Madia, Mauro A1 - Werner, Tiago A1 - Zerbst, Uwe A1 - Sommer, Konstantin A1 - Sprengel, Maximilian A1 - Bergant, M. A1 - Evans, Alex A1 - Roveda, Ilaria A1 - Serrano Munoz, Itziar A1 - Yawny, A. T1 - Damage Tolerant Approach in Additively Manufactured Metallic Materials N2 - Damage tolerance counts as one of the most widespread approach to fatigue assessment and surely as one of the most promising in understanding the process-structure-property-performance relationships in additively manufactured metallic materials. Manufacturing defects, surface roughness, microstructural features, short and long crack fatigue propagation, residual stresses and applied loads can be taken into consideration in a fracture mechanics-based fatigue assessment. Many aspects are crucial to the reliable component life prediction. Among those a prominent role is played by an accurate measurement and modelling of the short crack fatigue behavior, and reliable statistical characterization of defects and residual stresses. This work aims at addressing the issues related to both experimental testing, fatigue and fatigue crack propagation, and fracture mechanics-based modelling of fatigue lives. Examples will be provided on an additively manufactured AISI 316 L. T2 - TMS2021 VIRTUAL CY - Online meeting DA - 15.03.2021 KW - AISI 316L KW - Additive Manufacturing KW - Damage Tolerance KW - Microstructure KW - Defects KW - Residual Stress PY - 2021 AN - OPUS4-52293 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -