TY - CONF A1 - Alig, I. A1 - Oehler, H. A1 - Brauch, Niels A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Böhning, Martin T1 - Charakterisierung von Behälterwerkstoffen aus Polyethylen N2 - Das langsame Risswachstum (slow crack growth, SCG) sowie der umgebungsbedingte Spannungsriss (environmental stress cracking, ESC) sind relevante Schädigungsmechanismen für teilkristalline Werkstoffe auf Basis von Polyethylen hoher Dichte (PE-HD). Der Vortrag gibt einerseits einen Überblick über die grundlegenden Struktur-Eigenschafts-Beziehungen in diesem Kontext, andererseits werden auch verschiedene praxisorientierte Prüfverfahren vorgestellt. Letztere wurden in gemeinsamen Forschungsprojekten von BAM und LBF mit dem Schwerpunkt Gefahrgutbehälter bzw. Pflanzenschutzmittel vergleichend untersucht und durch weitergehende Analytik ergänzt. T2 - 16. Tagung des Arbeitskreises Polymeranalytik Webkonferenz, Fraunhofer LBF und FGK CY - Online meeting DA - 22.03.2022 KW - Polyethylen KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Spannungsriss PY - 2022 AN - OPUS4-54547 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Thuy, Maximilian A1 - Niebergall, Ute A1 - Oehler, H. A1 - Alig, I. A1 - Böhning, Martin T1 - Evaluation of the damaging effect of crop protection formulations on high density polyethylene using the Full Notch Creep Test N2 - Four typical high-density polyethylene container materials were used to investigate damage or stress cracking behavior in contact with model liquids for crop protection products. These model liquids are established in German regulations for the approval of dangerous goods containers and consist of typical admixtures used for crop protection products but without biological active ingredients. This study is performed with the standardized method of Full Notch Creep Test, adapting the media temperature to 40 °C according to the usual conditions where these test liquids are applied. The two model liquids differ into a water-based solution and a composition based on different organic solvents which are absorbed by the material up to significant levels. Therefore, extensive sorption measurements are performed. The fracture surfaces obtained are analyzed in detail not only by light microscopy, but also by laser scanning microscopy as well as scanning electron microscopy. Influence of pre-saturation and applied stress are addressed by respective systematic series of experiments. KW - Polyethylene KW - Full Notch Creep Test KW - Environmental Stress Cracking KW - Fracture PY - 2021 U6 - https://doi.org/10.1016/j.polymer.2021.123853 SN - 0032-3861 VL - 228 SP - 123853 PB - Elsevier Ltd. AN - OPUS4-52686 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Thuy, Maximilian A1 - Brauch, N. A1 - Niebergall, Ute A1 - Alig, I. A1 - Oehler, H. A1 - Böhning, Martin T1 - Environmental Stress Cracking of PE-HD Induced by Liquid Test Media Representing Crop Protection Formulations N2 - Packaging containers for dangerous goods that include aggressive liquids require that any packaging material that is based on high-density polyethylene has a high degree of stability and durability. This work is focused on testing the environmental stress cracking of the high-density polyethylenes used for such containers in contact with crop protection formulations, in particular, two model liquids established in Germany as standardized test media representatives for crop protection formulations containing the various admixtures typical for such products. One of the liquids is water-based and contains mostly surface-active ingredients, while the other is solvent-based and includes some emulsifiers. Originally established for pin impression tests, these model liquids and their individual components were here used for the first time as environmental media in the Full Notch Creep Test, which addresses the resistance against environmental stress cracking. The Full Notch Creep Test was carried out on five high-density polyethylene types with both model liquids, and also on one selected material with its components. The evaluation was focused on the fracture surface structures, which were visualized by a scanning electron microscope and by optical in situ imaging of the notch opening. While the water-based model liquid and its surface-active individual components induced environmental stress cracking with the characteristic pattern for a craze-crack mechanism and so-called brittle fracture on the surface, the solvent-based model liquid and its soluble ingredients exhibited rather ductile failure behavior, caused by the plasticizing effect on the polymer that reduced the yield stress of the high-density polyethylene. For both cases, fracture surface analysis, together with side views of the crack opening, showed a clear relation between surface pattern, notch deformation (e.g., by blunting), or crack opening due to crack growth with time to failure and the solubility of the liquids in high-density polyethylene. KW - Environmental stress cracking KW - Fracture surface KW - Full Notch Creep Test KW - Crop protection formulations KW - High-density polyethylene PY - 2023 U6 - https://doi.org/10.1520/STP164320210095 SP - 317 EP - 341 PB - ASTM International CY - West Conshohocken, PA (USA) AN - OPUS4-57459 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -