TY - CONF A1 - Rhode, Michael A1 - Schaupp, Thomas A1 - Muenster, C. A1 - Mente, Tobias A1 - Boellinghaus, Thomas A1 - Kannengießer, Thomas T1 - "On how to influence your results" - A review on carrier gas hot extraction parameters for hydrogen determination in welded specimens N2 - Carrier gas hot extraction (CGHE) is a commonly applied technique for determination of hydrogen in welded joints using a thermal conductivity device (TCD) for quantitative measurement. The CGHE is based on the accelerated hydrogen effusion due to thermal activation at elevated temperatures. The ISO 3690 standard suggests different specimen geometries as well as necessary minimum extraction time vs. temperature. They have the biggest influence on precise hydrogen determination. The present study summarizes the results and experience of numerous test runs with different specimen temperatures, geometries and factors that additionally influence hydrogen determination. They are namely: specimen surface (polished/as-welded), limited TCD sensitivity vs. specimen volume, temperature measurement vs. effects of PID-furnace controller as well as errors due to insufficient data assessment. Summarized, the temperature is the driving force of the CGHE. Two different methods are suggested to increase the heating rate up the reach the desired extraction temperature without changing the experimental equipment. Suggestions are made to improve the reliability of hydrogen determination depended on the hydrogen signal stability during extraction accompanied by evaluation of the recorded data. Generally, independent temperature measurement with calibration specimens is useful for further data analysis, especially if this data is used for calculation of trapping kinetics by thermal desorption analysis (TDA). T2 - IIW Annual Assembly and International Conference 2018, Meeting of Commission II-E CY - Nusa Dua, Bali Island, Indonesia DA - 15.07.2018 KW - Carrier gas hot extraction (CGHE) KW - Welding KW - ISO 3690 KW - Hydrogen KW - Experimental design PY - 2018 AN - OPUS4-45520 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - von Oertzen, Alexander T1 - 12. Tagung zur Sicherheit bei Sprengarbeiten (Bezpieczeństwo robót strzałowych) in Polen JF - Sprenginfo N2 - Das polnische Bergbauinstitut GIG richtet alle zwei Jahre eine Fachtagung mit dem Thema „Sicherheit bei Sprengarbeiten“ im kleinen Bergstädtchen Ustroń (Polen) aus. Die Tagung hat eine internationale Ausrichtung und bietet Vorträge und Themen sowohl in englischer als auch polnischer Sprache. Es werden Ergebnisse anwendungsorientierter Forschung sowie aus der Praxis der Sprengarbeit vorgestellt. Teilnehmer und Beiträge kommen sowohl von großen Bergbaubetrieben und in Polen tätigen Herstellern als auch von Instituten und Behörden. Im Jahr 2018 war auch die BAM vertreten und der Autor möchte hiermit von den vielfältigen Themen berichten. Es gibt eine gewisse Ähnlichkeit zu der jährlich in Siegen stattfindenden „Informationstagung Sprengtechnik“ des Deutschen Sprengverbandes, wobei bisher wenig inhaltlicher Austausch stattfindet. KW - Explosivstoffe KW - Konferenzbericht KW - Sprengarbeiten PY - 2018 SN - 0941-4584 VL - 40 IS - 3 SP - 6 EP - 7 PB - Deutscher Sprengverband CY - Siegen AN - OPUS4-46900 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bruno, Giovanni T1 - 2D and 3D imaging chracterization techniques for porous ceramics N2 - The combination of microstructural data with other experimental techniques and with modeling is paramount, if we want to extract the maximum amount of information on porous material properties. In particular, quantitative image analysis, statistical approaches, direct discretization of tomographic reconstructions represent concrete possibilities to extend the power of the tomographic 3D representation to insights into the material and component performance. I will show a few examples of possible use of X-ray tomographic data for quantitative assessment of porosity in ceramics. Moreover, I will show how not-so-novel 2D characterization techniques, based X-ray refraction, can allow a great deal of insights in the damage evolution in microcracked (and porous) ceramics. I will show how X-ray refraction can detect objects (e.g. microcracks) below its own spatial resolution. Finally, I will discuss the link between the microstructural findings and the mechanical properties of porous microcracked ceramics. T2 - CIMTEC 2018 CY - Perugia, Italy DA - 04.06.2018 KW - Orientation KW - Cordierite KW - Beta-eucrytite KW - Porosity KW - Microcracking KW - Computed tomography KW - X-ray refraction PY - 2018 AN - OPUS4-45119 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Ulbricht, Alexander A1 - Scholz, Philipp A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - 3D printing material filled with metal organic frameworks analyzed by synchrotron based absorption edge tomography N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which could be used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - MSE 2018 CY - Darmstadt, Germany DA - 26.09.2018 KW - Absorption edge KW - Tomography KW - Metal organic framework KW - Synchrotron PY - 2018 AN - OPUS4-46429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Bachmann, Marcel A1 - Karkhin, V. A1 - Rethmeier, Michael T1 - A novel approach for calculating the thermal cycle of a laser beam welding process using a stationary CFD model N2 - This work aims to find the thermal cycles during and after fusion welding through simulation by first calculating the resulting local temperature field in the quasi-stationary part of the process. Here complete-penetration keyhole laser beam welding with a laser power of 18 kW on a 15 mm thick slab of a low-alloyed steel at a welding speed of 2 m/min is considered. In order to physically depict the laser material interaction a multi-physics numerical model including the effects of phase transformation, thermo-capillary convection, natural convection and temperature-dependent material properties up to evaporation temperature is developed. It uses a fixed keyhole geometry with a right truncated circular cone shape to introduce the laser beam energy to the workpiece. In a subsequent study, the resulting local temperature field is then used as an equivalent heat source in order to predict the unsteady thermal cycle during and after fusion welding. The translational movement of the laser beam through the workpiece is represented by a moving mesh approach. For the simulation, stationary heat transfer and fluid dynamics are described by a system of strongly coupled partial differential equations. These are solved with the commercial finite element software COMSOL Multiphysics 5.0. The results of the numerical simulation are validated by experiments, where the weld bead shapes and the thermal cycles show good correlation. T2 - 12th International Seminar "Numerical Analysis of Weldability" CY - Graz-Seggau, Austria DA - 23.09.2018 KW - Equivalent volumetric heat source KW - Process simulation KW - Laser beam welding KW - Transient heat transfer KW - Moving mesh PY - 2018 AN - OPUS4-46037 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kindrachuk, Vitaliy A1 - Unger, Jörg F. T1 - A novel computational method for efficient evaluation of structural fatigue N2 - The methods of computational damage mechanics are well-established for the description of degradation of materials under monotone loading. An extension to structural damage induced by cyclic loading is however significantly limited. This is due to enormous computational costs required to resolve each load cycle by conventional temporal incremental integration schemes while a typical fatigue loading history comprises between thousands and millions of cycles. Despite the permanent increase of computational resources and algorithmic performance, a successful approach is rather based on the development of novel multiscale in time integration schemes. A Fourier transformation-based temporal integration (FTTI) is represented, which takes advantage of temporal scale separation incorporated into the cycle jump method. The response fields are approximated by a Fourier series whose coefficients undergo the evolution on a long-time scale. This is correlated with the evolution of the history variables, including damage, by means of the adaptive cycle jump method of various orders. The necessary extrapolation rates are obtained from the underlying solution of a short-time scale problem, which results from the oscillatory boundary condition and fulfills the global equilibrium of the Fourier coefficients. In this way, a remarkable speedup is achieved because the number of cycles to be fully integrated dramatically decreases. The key idea behind the FTTI method is that the global in space equilibrium problem is linear since it is decoupled from the evolution equations. The latter are solved in the quadrature points under response fields prescribed throughout the whole load cycle. Consequently, integration of a single load cycle is much more efficient than the conventional single scale integration where the global equilibrium iteration and the local iteration of the evolution equations are coupled. This results in an additional speedup of the FTTI method. The performance of the FTTI technique is demonstrated for two different constitutive behaviors: a viscoplastic model with a damage variable governed by the local equivalent viscoplastic strain; a quasi-brittle response where the damage variable is driven by a non-local equivalent strain. The latter is implicitly introduced as proposed by Peerlings. Both, the explicit and implicit extrapolation schemes are validated. The FTTI solutions agree very well with the reference cycle-by -cycle solutions, while significantly reducing the computational costs. The adaptive determination of the jump length can properly recognize the particular responses throughout the fatigue loading history (stationary fatigue, acceleration of fatigue damage when approaching failure) as well as stress redistribution phenomena. T2 - International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue International Fatigue Congress Congress Congress 2018 CY - Poitiers, France DA - 27.05.2018 KW - Fatigue KW - Accelerated integration scheme PY - 2018 AN - OPUS4-46975 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Czediwoda, Fabian A1 - Fedelich, Bernard A1 - Stöhr, B. A1 - Göhler, T. A1 - Völkl, R. A1 - Nolze, Gert A1 - Glatzel, U. T1 - A numerical approach to model high-temperature creep behaviour of Ni-base superalloys from microstructural morphology to grain size scales N2 - A constitutive model for the mechanical behaviour of single crystal Ni-base superalloys under high temperature conditions has been developed in the framework of a Cooretec project in cooperation with Siemens AG, MTU Aero Engines AG and University Bayreuth. In addition to the conventional material properties e.g. elastic constants, the model requires the parameters of the initial microstructure as an input. Thus, the γ’-precipitate size and the channel width of the γ-matrix were obtained from SEM micrographs. The model uses the slip system theory and describes the movement, multiplication and annihilation of dislocations in the channels. Furthermore, the cutting of precipitates is another mechanism contributing to the plastic flow. The evolution of the morphology due to rafting and its effects on the deformation have been implemented according to. The kinematic hardening is introduced as a stress tensor to realistically represent the strain hardening of arbitrary oriented single crystals. The mechanical behaviour of single crystal specimens has been experimentally investigated in tension tests at different strain rates and in creep tests under various loads. The constitutive model has been calibrated based on the experimental data for temperatures of 950°C and 850°C and the [001] and [111] crystallographic orientations. Finally, a micromechanical model was created to simulate the creep response of additive manufactured polycrystalline structures. An EBSD image is taken to obtain the grain geometry and their respective orientation. The grain boundaries are discretised using cohesive elements, whereas the single crystal model was applied to each grain in the representative volume. The polycrystal model is generated using Dream3D, NetGen and other software previously developed at the BAM. T2 - 6th European Conference on Computational Mechanics (ECCM 6) CY - Glasgow, UK DA - 11.06.2018 KW - Nickel-base superalloy KW - Creep KW - Rafting KW - Viscoplasticity KW - EBSD KW - Grain boundaries PY - 2018 AN - OPUS4-46973 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Falkenberg, Rainer T1 - A phase-field approach to fracture coupled with mass transport for the simulation of environmentally-assisted damage JF - Proc. Appl. Math. Mech. N2 - With the introduction of a mass transport mechanism the entire problem is subjected to a time frame that dictates the time-dependent action of soluted species on mechanical properties. A numerical framework within the phase-field approach is presented with an embrittlement-based coupling mechanism. The underlying functionals are expressed in terms of the displacement, mass concentration and crack phase-field. Within the phase-field approach the modelling of sharp crack discontinuities is replaced by a diffusive crack model facilitating crack initiation and complex crack topologies without the requirement of a predefined crack path. The isotropic hardening of the elasto-plastic deformation model and the local fracture criterion are affected by the species concentration. This allows for embrittlement and leads to an accelerated crack propagation. An extended mass transport equation for hydrogen embrittlement, accounting for mechanical stresses and deformations, is implemented. For stabilisation purposes a staggered scheme is applied to solve the system of partial differential equations by a multi-field finite-element method. A thermodynamically consistent coupling relation that accommodates the required mechanisms is presented. KW - Environmentally assisted cracking KW - Fracture mechanics KW - Crack propagation KW - Phase-field KW - Mass transport PY - 2018 DO - https://doi.org/10.1002/pamm.201710088 VL - 17 SP - 237 EP - 238 PB - Wiley-VCH Verlag GmbH & Co. KGaA CY - Weinheim AN - OPUS4-46435 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Artinov, Antoni A1 - Ivanov, S. A1 - Valdaytseva, E. T1 - A simplified model for numerical simulation of laser metal deposition process with beam oscillation N2 - A simplified model for the numerical simulation of the laser metal deposition process with beam oscillation is proposed. The model studies circular and lateral oscillations in order to reduce the porosity of the deposited part, to increase the process efficiency and the gap bridging ability as well. The deposition rate is increased by modifying the shape and the width of the molten pool through an optimized laser beam power distribution and oscillation amplitude. The relationship between the process conditions and the shape of the fabricated part are determined. It is found that an increase of the amplitude by a lateral oscillation of the beam reduces the heat flux and hence the shape of the deposited wall. A good correlation between the numerically calculated results and the experimental measurements is obtained. T2 - 9th International Conference on Beam Technologies and Laser Applications CY - St. Petersburg, Russia DA - 17.09.2018 KW - Numerical modelling KW - Laser metal deposition KW - Beam oscillations PY - 2018 AN - OPUS4-46017 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ivanov, Sergei A1 - Artinov, Antoni A1 - Valdaytseva, Ekaterina A1 - Stankevich, Stanislav A1 - Andreevich, Gleb T1 - A simplified model for numerical simulation of laser metal deposition process with beam oscillation JF - Journal of physics: Conference series N2 - A model of laser metal deposition with beam oscillation has been developed. The proposed model consists of two coupled sub-models calculating the heat transfer in the deposited part and the free surface of the molten pool, respectively. The heat transfer simulation of the deposited part solves a three-dimensional quasi-stationary heat conduction problem. The free surface of the molten pool are determined by solving the Laplace-Young equation. The developed model enables the layer-by-layer prediction of the shape of the deposited part and the resulting temperature field. It is shown that for an oscillation amplitude equal to the beam radius the peak value of the heat flux decreases by about 53% and 73% in the case of lateral oscillation and circular oscillation, respectively. Lateral oscillating laser beam results in a higher penetration depth due to the higher thermal efficiency. The amplitude of the laser beam oscillation effects the shape of the deposited wall and the deposition rate. A good correlation between the numerically calculated and experimentally observed results is obtained. KW - Laser metal deposition KW - Beam oscillation KW - Numerical modelling PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-467081 DO - https://doi.org/10.1088/1742-6596/1109/1/012006 SN - 1742-6588 SN - 1742-6596 VL - 1109 SP - 012006, 1 EP - 8 PB - IOP Publ. CY - Bristol AN - OPUS4-46708 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -