TY - CONF A1 - Beck, Uwe A1 - Hertwig, Andreas A1 - Othake, N. A1 - Hiratsuka, M. T1 - Ellipsometrische Klassifizierung von Kohlenstoffschichten N2 - Der Vortrag widmet sich der „ELLIPSOMETRISCHE KLASSIFIZIERUNG VON KOHLENSTOFFSCHICHTEN“ und beschreibt die Punkte: 1. Anwendungen Kohlenstoffschichten–Carbon–based films (DLC) aus dem Vortrag N. Ohtakeet. al. (ISO TC 107, Tokyo 2017),2. Präparation der Kohlenstoffschichten für ISO TC 107 Ringversuch aus Vortrag M. Hiratsuka et. al. (ISO TC 107, Tokyo 2017), 3. Ellipsometrische Charakterisierung von Kohlenstoffschichten, Ergebnisse des Ringversuchs (ISO TC 107, Tokyo 2017) Vortrag Beck et. al. und 4.Deutsche Normungsaktivitäten national/international zur Ellipsometrie DIN NA 062-01-061 (DIN 50989-1)/TC 107 (PWI DE)“ im Einzelnen. T2 - Netzwerksymposium “schützen und Veredeln von Oberflächen”, Wildau CY - TH Wildau, Germany DA - 01.03.2018 KW - Anwendung von Kohlenstoffschichten KW - Klassifizierung von Kohlenstoffschichten KW - Ringversuch Ellipsometrie KW - Normung Ellipsometrie PY - 2018 AN - OPUS4-44340 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle T1 - Building macromolecular mimetics of cell constituents N2 - One of the holy grails in chemistry is to reconstruct some of life’s functions with synthetic materials. In this contribution, we demonstrate that “simple” macromolecular architectures such as dendritic amphiphiles, Janus dendrimers, thermoresponsive and hybrid organic-inorganic (co)polymers enable to mimic some of the functions of proteins for biomineralization, natural bactericides, biological membranes or the stimuli-responsive cytoskeleton. T2 - Makromolekulares Kolloquium Freiburg 2018 CY - Freiburg in Breisgau, Germany DA - 21.02.2018 KW - Thermoresponsive polymers KW - Cytoskeleton mimic PY - 2018 AN - OPUS4-44296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kulla, Hannes A1 - Becker, C. A1 - Paulus, B. A1 - Casati, N. A1 - Rademann, K. A1 - Emmerling, Franziska T1 - In situ investigations of a mechanochemical cocrystal formation by X-ray diffraction in two different milling jars N2 - We present an in situ PXRD investigation of the mechanochemical cocrystal formation of pyrazinamide with pimelic acid in two milling jar materials. DFT calculations of the two synthesized polymorphs suggest that the relative stability is based on a conformation change of pyrazinamide in the cocrystal. T2 - 3. BAM-BfR Workshop CY - Berlin, Adlershof, Germany DA - 15.02.2018 KW - Mechanochemistry KW - Cocrystal KW - Polymorph KW - In situ XRD KW - DFT PY - 2018 AN - OPUS4-44315 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bertin, Annabelle A1 - Asadujjaman, Asad T1 - Upper critical solution temperature (UCST)-type thermoresponsive polymers from hydrogen-bonding monomers N2 - UCST-type thermoresponsive polymers (i.e. that phase separate from solution upon cooling) present a tremendous potential not only in aqueous media where they can be used in drug delivery, diagnostic and microfluidic applications, but also in water/alcohol mixtures, where they can be used for instance in sensing systems for alcohol-soluble drugs. However, only a few thermoresponsive polymers have been reported that present an UCST in a relevant temperature range and “green” solvents such as water or ethanol. In this context, acrylamide-based monomers can be very useful building blocks for designing novel non-ionic UCST-type polymers because of their hydrophilic nature (with the appropriate side chain) and propensity to form hydrogen bonds. We will present our latest results on the UCST-type thermoresponsive behaviour of acrylamide- and 2,6-diaminopyridine-based homopolymers and copolymers in water or water/alcohol mixtures, and give some insights about the rational design of UCST polymers relying on H-bonding. T2 - Invited talk (Dr. Jean-Francois Lutz) Institut Charles Sadron CY - Strasbourg, France DA - 26.01.2018 KW - Thermoresponsive polymer KW - UCST-type polymer KW - H bonds KW - Diaminopyridine KW - Acrylamide PY - 2018 AN - OPUS4-44001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Weise, Matthias T1 - White light interference microscopy, ellipsometry, and instrumented indentation testing as reference procedures N2 - The paper addresses “WHITE LIGHT INTERFERENCE MICROSCOPY, ELLIPSOMETRY, AND INSTRUMENTED INDENTATION TESTING AS REFERENCE PROCEDURES“ and is subdivided in the following sections: 1. Measurement vs. testing vs. reference procedures, 2. White light interference microscopy (WLIM) for determination of step height h, 3. Spectroscopic ellipsometry (SE) for determination of layer thickness d and 4. Instrumented indentation testing (IIT) for determination of indentation hardness HIT. The following points are discussed in more detail: methodology of measurement and testing, uncertainty budgets for direct (WLIM), model-based (SE) and formula-based (IIT) reference procedures by means of specific examples. It is shown that standardization efforts are connected to reference procedures. T2 - Referenzverfahren CY - BAM, Berlin, Germany DA - 21.02.2018 KW - Reference procedures KW - Uncertainty budgets KW - White light interference microscopy KW - Spectroscopic ellipsometry KW - Instrumented indentation testing PY - 2018 AN - OPUS4-44256 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Woydt, Mathias A1 - Wäsche, Rolf A1 - Brandt, Guido A1 - Ehrke, Roman T1 - Tribology in hot steam - for waste heat recovery or for energy harvesting - N2 - The wear rates of self-amted alumina couples show that friction as well as wear is largely determined by the above mentioned hydro-thermal conditions. The presence of water and ist amount available in the surrounding system either in liquid or in gaseous from plays a key role for friction and wear behavior and cabe benefical for the tribological profile of steam degradation resistant materials. Hot steam enhances the tribo-chemical formations of oxides and hydroxides on MgO-ZrO2, alumina and antimony impregnated carbon. T2 - 21th International Colloquium Tribology CY - Stuttgart/Ostfildern, Germany DA - 09.01.2018 KW - Friction KW - Alumina KW - Hot steam PY - 2018 AN - OPUS4-43895 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Charactrization of Co(polyamide)s Molar mass distribution; Functionalization; supression of end group effects in favor of sequence distribution analysis; Evidence of of randomization with increasing reaction time T2 - Polyamide Meeting, DSM CY - Sittard, The Netherlands DA - 20.04.2018 KW - Liquid chromatography KW - Mass spectrometry of polymers PY - 2018 AN - OPUS4-44747 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Beck, Uwe A1 - Griepentrog, Michael A1 - Hertwig, Andreas A1 - Sahre, Mario A1 - Unger, Wolfgang A1 - Hodoroaba, Vasile-Dan A1 - Krüger, Jörg T1 - Plasma Germany, Fachausschuss Normung, Berichtszeitraum Herbst 2017 – Frühjahr 2018 N2 - Der Vortrag gibt den aktuellen Stand der Normung im Bereich der Oberflächen-technik insbesondere der Oberflächenanalytik und der Oberflächenmess- und -prüftechnik wider. Vorgestellt wird der Status technischer Berichte, Normenentwürfe und Normen u.a. zur Charakterisierung von funktionellen Glasoberflächen für bioanalytische Anwendungen, zur Messung der Schichtdicke von Nanomaterialien mittels Ellipsometrie, zur Kalibrierung von Interferometern und Interferenzmikroskopen für die Formmessung, zur Rockwelleindringprüfung zur Bewertung der Schicht-haftung, zu den Grundlagen der Ellipsometrie, zur Messung der Schichtdicke mittels Wirbelstromverfahren, zur Schichtpotentialmessung von Mehrfach-Nickelschichten, zu Filtern und Augenschutzgeräten gegen Laserstrahlung sowie zur Bestimmung der Schichthaftung mittels Zugversuch. T2 - Plasma Germany, Fachausschuss Normung, Frühjahrssitzung CY - Kiel, Germany DA - 17.04.2018 KW - Stand der Normung KW - Oberflächentechnik KW - Oberflächenanalytik KW - Oberflächenmesstechnik KW - Oberflächenprüftechnik PY - 2018 AN - OPUS4-44729 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Sobol, Oded T1 - Hydrogen assisted cracking and transport studied by ToF-SIMS and data fusion with HR-SEM T2 - BAM-Dissertationsreihe N2 - For almost 150 years it is known that hydrogen has a deleterious effect on the mechanical properties of metallic components. Nowadays, the problem of hydrogen assisted degradation is highly relevant in energy related fields due to the massive use of steel as a structural component in these applications and its sensitivity to hydrogen. Since the discovery of hydrogen assisted cracking (HAC), researchers studied intensively and suggested possible explanations and mechanisms in order to define how hydrogen is affecting the material. In general, it is considered that hydrogen changes the mechanical properties more in terms of ductility (deformation capacities) than in strength (load capacities). Hydrogen concentration is one of three crucial factors in the degradation process, together with the microstructure of the material and the internal/external mechanical load. The relatively high concentration of hydrogen resulting in this loss of ductility can originate during production or before service (e.g. welding processes) and during service (i.e. catholically protected systems to eliminate corrosion processes in sour environments). In parallel to the theoretical work, tremendous efforts were, and are still, invested in searching for a proper method to elucidate, map and quantify the hydrogen in the microstructure, which is the basis for this work. For steels, the focus is mainly on the observations of diffusion processes and the interaction of hydrogen with the microstructure in regions with high local stresses/strains (for example around evolving cracks). The challenge for reaching this goal arises from the fact that accurate indication of hydrogen by means of position, unlike heavier atoms, can be made only by mass spectrometry or by interaction with another element (e.g. silver decoration, special coating and resonant nuclear reaction by nitrogen). In addition to this, the difficulty recording the hydrogen behavior while it rapidly diffuses through the material, leaving only the unpredicted failure, should be taken into account. Although using powerful characterization methods, models and computational simulations, the key to defining the mechanisms behind HAC is still under debate and not fully understood. The relationship between material and hydrogen is determined by three factors, i.e., the material structure and microstructure – determining the physical properties, the mechanical load applied on the material and the hydrogen concentration. It is well known that in order to have a complete definition of HAC these three factors must be examined locally with the minimal scale and the maximal resolution reachable. The major gap is the lack in such a characterization method or a technique by which one has the ability to detect and observe the hydrogen in the metallic microstructure. The commonly used techniques nowadays are capable of characterization of the microstructure without the ability to observe the hydrogen distribution. Global hydrogen concentration and localized hydrogen observation are possible by some techniques which are incapable of indicating a change in the structure or microstructure therefore a comprehensive overview can be gained only by combining several methods. In the presented research, secondary ion mass spectrometry (SIMS) was adopted as the main tool to detect and locally map the hydrogen distribution in two types of duplex stainless steel grades: EN 1.4462 (standard 2205 duplex stainless steel) and EN 1.4162 (2101 lean duplex stainless steel). The term duplex stainless steel (DSS) refers to the austenitic-ferritic microstructure of the steel where the combination of physical and mechanical properties of the two phases is achieved. The DSS was selected as a case study for this work due to the wide use of this grade in many energy and the lack of knowledge on hydrogen behavior in two-phase containing microstructures. ToFSIMS was exploited in-situ and ex-situ in three experimental approaches during or following an electrochemical charging procedure. This type of hydrogen charging was selected as it simulated a procedure of cathodic protection of most sub-water oil and gas extraction and delivery systems. The experimental procedures were: 1. Ex-situ charging followed by ToF-SIMS imaging for basic understanding of hydrogen distribution. 2. Ex-situ charging followed by in-situ mechanical loading to obtain information on hydrogen behavior around a propagating crack. 3. In-situ permeation of hydrogen through a steel membrane inside the ToF-SIMS to obtain information on diffusion behavior of hydrogen in a two-phase microstructure. The comprehensive view of the effect of hydrogen on steel was gained by using supplementary methods, such as high resolution scanning electron microscopy (HR-SEM), focused ion beam (FIB) and electron back-scattered diffraction (EBSD). The state of the art in this work lies in applying both: in-situ experimental approaches and data treatment of the ToF-SIMS raw data. The data treatment includes the combination of data from several sources (data fusion). The results for the ex-situ charging followed by static sample imaging and data fusion showed that when the analyzed surface is directly exposed to the electrolyte the degradation is pronounced differently in the ferrite, austenite and interface. The degradation mechanisms in the ferrite and austenite were reflected by the formation of cracks on the surface of both, where a high concentration of hydrogen was obtained. This result supports the assumption that hydrogen is attracted to highly deformed regions. The advantage of using in-situ charging/permeation in comparison to ex-situ charging is that the effect of hydrogen on the ferrite and austenite phases when the hydrogen is evolving from within the microstructure is realized, in comparison to when the analyzed surface is initially exposed directly to the electrolyte. In both experiments the ferrite was observed as a fast diffusion path for the hydrogen. The faster diffusion of hydrogen through the ferrite is expected due to the higher diffusion coefficient, however, a direct proof for the diffusion sequence in this scale was never shown. Most significant results were achieved by the ‘core’ experiments of this research. These experiments included the design of a novel dynamic mechanical loading device to apply an external load during SIMS imaging of a hydrogen precharged-notched sample. For the first time it was shown that plastic deformation induced by applying a mechanical load is resulting in a redistribution of hydrogen locally around the notch. T3 - BAM Dissertationsreihe - 160 KW - Duplex stainless steels KW - Hydrogen assisted cracking KW - Time-of-Flight secondary ion mass spectrometry KW - Data fusion PY - 2018 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-447331 SN - 1613-4249 VL - 160 SP - I EP - 180 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-44733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weidner, Steffen A1 - Kricheldorf, H. A1 - Scheliga, F. T1 - MALDI-TOF-MS for the determination of polymerization mechanisms of biodegradable polymers N2 - Eine neue Art einer Ring-Expansion Polymerization (REP) von zyklischen Polylaktiden mittels neuer Katalysatoren wird präsentiert. MALDI-TOF Massenspektrometrie und andere analytische Techniken wurden zur Aufklärung des Mechanismus eingesetzt. Dabei zeigte sich, dass im Gegensatz zu anderen REP, ausschließlich zyklische Polymere gebildet wurden. Diese stellen neue Kandidatenmaterialien für zukünftige neue CRM dar. T2 - 22. MALDI-Kolloquium CY - Berlin, Germany DA - 15.05.2018 KW - MALDI-TOF MS KW - Polylaktid KW - Zyklen PY - 2018 AN - OPUS4-44835 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -