TY - JOUR A1 - Rhode, Michael A1 - Steppan, Enrico A1 - Kannengießer, Thomas A1 - Steger, Jörg ED - Lippold, J. T1 - Effect of hydrogen on mechanical properties of heat affected zone of a reactor pressure vessel steel grade N2 - The steel grade 20MnMoNi5-5 (according to German DIN standard or 16MND5 according to French AFNOR standard) is widely applied in (weld) fabrication of reactor pressure vessel components. Thus, a wide range of welding technologies (like submerged arc welding (SAW) or tungsten inert gas (TIG)) is used resulting in different heat affected zone (HAZ) microstructures. During weld fabrication, the weld joints may take up hydrogen. Especially, the HAZ shows an increased susceptibility for a degradation of the mechanical properties in presence of hydrogen. In addition, the hydrogen-assisted degradation of mechanical properties is influenced by three main local factors: hydrogen concentration, microstructure, and load condition. Hence, the base material (BM) and two different simulated non-tempered as-quenched HAZ microstructures were examined using hydrogen-free and hydrogen-charged tensile specimens. The results indicate that the effect of hydrogen on the degradation is significantly increased in case of the HAZ compared to the BM. In addition, hydrogen has remarkable effect in terms of reduction of ductility. It was ascertained that the degradation of the mechanical properties increases in the order of BM, bainitic HAZ, and the martensitic HAZ. Scanning electron microscope (SEM) investigation showed a distinct change of the fracture topography depended on the microstructure with increasing hydrogen concentration in case of the as-quenched HAZ microstructures. KW - Mechanical properties KW - Pressure vessel steels KW - Heat affected zone KW - Hydrogen KW - Hydrogen embrittlement KW - Low alloy steels PY - 2016 UR - http://link.springer.com/article/10.1007/s40194-016-0325-9 U6 - https://doi.org/10.1007/s40194-016-0325-9 VL - 60 IS - 4 SP - 623 EP - 638 PB - Springer-Verlag GmbH CY - Heidelberg, Germany AN - OPUS4-36454 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Launert, B. A1 - Rhode, Michael A1 - Pasternak, H. A1 - Kannengießer, Thomas ED - Dubina, D. ED - Ungureanu, V. T1 - Welding Residual Stresses in High-strength Steel. Experimental Results N2 - This article presents the latest results of an ongoing national research project on improved models for the prediction of welding residual stresses of thick-plated welded I-girders. The experimental program is presented and the importance of different influencing factors on the residual stresses is discussed in detail. All results are compared for mild (S355J2+N) and high strength (S690QL) steel. Finally, conclusions for further works are drawn. T2 - SDSS 2016 - The International Colloquium on Stability and Ductility of Steel Structures - SDSS 2016 CY - Timisoara, Romania DA - 30.05.2016 KW - Residual Stresses KW - Welding KW - High-Strength Steel KW - I-Girder KW - Component Test PY - 2016 SN - 978-92-9147-133-1 VL - 2016 SP - 517 EP - 524 PB - Ernst & Sohn AN - OPUS4-37890 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pasternak, H. A1 - Launert, B. A1 - Rhode, Michael A1 - Kannengießer, Thomas ED - Zingoni, A. T1 - Residual Stresses and Imperfections in Welded High-strength I-shape Sections N2 - This article addresses the imperfections caused by the weld assembly in I-shape sections made of two structural steel grades. Load influencing imperfections are assumed as deviations from the ideal shape (e.g. bending distortion) and longitudinal residual stresses. The quality of a numerically aided design of components exposed to either compression and/or bending is significantly affected, depending on these parameters. The Eurocode (EC3) provides robust simplified models. As a result, the Ultimate Limit State (ULS) is approached on a conservative basis. The following investigations are aimed at providing further guidance on these values in component-like specimens. The long term goal is an improved understanding of the load-bearing capacity of such sections. As a first step in this process, the experimental and corresponding numerical studies are presented. T2 - 6th International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016) CY - Cape Town, South Africa DA - 05.09.2016 KW - Residual Stresses KW - Welding KW - High-strength Steel KW - Numerical Modeling KW - Component PY - 2016 SN - 978-1-138-02927-9 VL - 2016 SP - 1139 EP - 1146 PB - CRC Press, Taylor & Francis Group CY - Boca Raton, FL, USA AN - OPUS4-37888 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Steger, Jörg A1 - Böllinghaus, Thomas A1 - Hoffmeister, H. A1 - Münster, C. A1 - Kannengießer, Thomas T1 - Hydrogen in Welded Microstructures of T24 Steel: Effect on Mechanical Properties and Corresponding Hydrogen Diffusion N2 - Low-alloyed CrMoV steels, such as T24, are widely used for welded components in fossil power stations due to their excellent creep-strength. Spectacular failure cases in the recent years exhibited severe cracking in T24 welds. The results showed that hydrogen-assisted cracking (HAC) occurring up to 200 degree Celsius cannot be excluded. Hence, a basic understanding is necessary on how hydrogen affects the material properties of welded microstructures. In this regard, each weld microstructure (HAZ and weld metal) has influence on the HAC susceptibility and respective hydrogen diffusion. Thus, the present contribution summarizes different results obtained from experiments with grades T24 (CrMoV alloy) and T22 (CrMo) and thermally simulated HAZ. Tensile tests were conducted with hydrogen charged specimens and compared to hydrogen-assisted stress corrosion cracking results obtained from slow strain rate tests (SSRT) up to 200 degree Celsius. Electrochemical permeation and degassing experiments were performed to identify a particular weld microstructure influence on hydrogen diffusion and trapping (especially in the HAZ). The results showed that T24 base material has improved resistance to hydrogen-assisted degradation/cracking. In contrast, the as-welded HAZ had remarkably increased susceptibility (tesnile tests at hydrogen concentration of 1 to 2 ppm). SSRT experiments confirmed this at elevated temperatures for both the T24 and the T22. Hence, the evaluation of a particular degradation of the mechanical properties should be performed independently for each weld microstructure. In addition, the HAZ showed decreased diffusion coefficients (at room temperature) of approximately one magnitude compared to the base materials. Trapped hydrogen was determined in the T24 at temperatures up to 120 degree Celsius compared to 75 degree Celsius in the T22. This has to be considered in case of changing operational temperatures, e.g. in the case of start-up and shutdown processes of boiler components. T2 - 10th Conference on Trends in Welding Research CY - Tokyo, Japan DA - 11.10.2016 KW - Degradation of Mechanical Properties KW - Hydrogen KW - Creep-resistant Steel KW - Weld Joint KW - Diffusion PY - 2016 AN - OPUS4-37827 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Adaption of Heat Control Concepts for Welding Stress Optimization in High-strength Steel Components N2 - High-strength structural steels from 690 MPa are increasingly applied at present. Major reasons are lightweight design trends and potential cost reductions. The structural design of welds and their manufacturing become more challenging with increasing material strength. By reasons of a higher yield ratio of these steels, the development of high residual stresses has to be avoided, since they are detrimental to the components safety and performance. Local restraint stresses and welding loads due to external shrinkage restraints occur. Frequently, this leads to critical tensile residual stresses in the weld and HAZ. In this study, influences of welding process parameters and restraint conditions on the residual stress state in welded components of high-strength steels were investigated. Multilayer GMAW tests under free shrinkage and experiments under well-defined restraints in special in-house developed testing facilities were accomplished. The tests permitted analyses of the resulting local residual stresses measured by means of X-ray diffraction and global reaction stress build-up while welding and cooling. Significant effects were found for heat control, seam configuration and restraint condition. Besides high restraints, elevated preheating and interpass temperatures lead to increased welding stresses. An adaption of welding parameters considering heat control, weld run sequence and seam configuration proved to be beneficial. T2 - 10th Conference on Trends in Welding Research CY - Tokyo, Japan DA - 11.10.2016 KW - Weld heat input KW - Residual Stress KW - High-strength Steel KW - Welding KW - Component Test PY - 2016 AN - OPUS4-37828 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Münster, Christoph A1 - Mente, Tobias A1 - Steger, Jörg A1 - Böllinghaus, Thomas T1 - Influence of experimental conditions and calculation method on hydrogen diffusion coefficient evaluation at elevated temperatures N2 - Hydrogen-assisted cracking (HAC) represents a significant failure risk for (high strength) creep resistant low-alloyed steel components in fossil-fired power plant applications at temperatures of up to and above 200 °C. This particularly applies to respective start-up and shut-down processes associated with alternating service-conditions in terms of load flexible power plants. For quantitative determination of localized crack critical hydrogen concentrations, the temperature dependent hydrogen diffusion coefficients have to be determined as exactly as possible. However, available literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels with similar microstructures. Additionally, the available diffusion data seem not to be very reliable and their scatter increases with decreasing temperature. One reason is that the experimental boundary conditions can have a major impact on the determination of respective effective diffusion coefficients. Hence, the scope of this study is to evaluate the influence of the experimental boundary conditions on the derived diffusion coefficients. In addition, different methods for calculating diffusion coefficients are discussed. To elucidate such influences and to draw a line to practical application, the diffusion and trapping behavior in the creep resistant steel 7CrMoVTiB10 10 has been studied. For such purpose, hydrogen charged specimens were isothermally degassed at different temperatures using carrier gas hot extraction (CGHE). Based on experimental data, a numerical model has been developed by which the hydrogen transport behavior and the respective hydrogen distribution during CGHE can be assessed. It is demonstrated that the specimen heating rate has a large influence on the calculated diffusion coefficients under assumption of isothermal degassing which elsewhere has been underestimated in the assessment of diffusion data in creep-resistant steels. The numerical results suggest that calculation methods for diffusion coefficients are limited if compared to experimental results. It also turned out that the sample preparation time before CGHE can enormously influence determined diffusion coefficients. Consequently, non-homogeneous hydrogen concentration profiles have to be anticipated in the simulations to arrive at characteristic effusion curves consistent to respective CGHE experiments. In turn, validated diffusion coefficients are now available for the low-alloyed Cr-Mo-V steel which might be helpful to calculate appropriate hydrogen removal heat treatment procedures, for instance. T2 - International Hydrogen Conference - Material Performance in Hydrogen Environments CY - Jackson Lake Lodge, Moran, Wyoming, USA DA - 11.09.2016 KW - Hydrogen diffusion KW - Elevated temperatures KW - Welding KW - Creep-resistant steel KW - Numerical modeling KW - Calculation PY - 2016 AN - OPUS4-37403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Mente, Tobias A1 - Böllinghaus, Thomas T1 - Modeling of hydrogen-assisted cracking (HAC) in duplex stainless steels (DSS) N2 - Modeling of Hydrogen-Assisted Cracking (HAC) in Duplex Stainless Steels (DSS): - Hydrogen causes significant degradation in DSS and consequently HAC - Mechanisms of HAC have not been fully understood in two-phase microstructures - Mesoscale numerical modeling for HAC in DSS was created, coupled to the macroscale, enabling simulation of HAC in both phases independent from predefined crack paths T2 - International Hydrogen Conference - Material Performance in Hydrogen Environments CY - Jackson Lake Lodge, Moran, Wyoming, USA DA - 11.09.2016 KW - Hydrogen KW - Numerical modeling KW - Duplex stainless steel KW - Hydrogen assisted cracking PY - 2016 AN - OPUS4-37404 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rhode, Michael A1 - Münster, Christoph A1 - Mente, Tobias A1 - Steger, Jörg A1 - Böllinghaus, Thomas T1 - Influence of Experimental Conditions and Calculation Method on Hydrogen Diffusion Coefficient Evaluation at Elevated Temperatures N2 - Hydrogen-assisted cracking (HAC) represents a significant failure risk for (high strength) creep resistant low-alloyed steel components in fossil-fired power plant applications at temperatures of up to and above 200 °C. This particularly applies to respective start-up and shut-down processes associated with alternating service-conditions in terms of load flexible power plants. For quantitative determination of localized crack critical hydrogen concentrations, the temperature dependent hydrogen diffusion coefficients have to be determined as exactly as possible. However, available literature provides a wide range of hydrogen diffusion coefficients for low alloyed steels with similar microstructures. Additionally, the available diffusion data seem not to be very reliable and their scatter increases with decreasing temperature. One reason is that the experimental boundary conditions can have a major impact on the determination of respective effective diffusion coefficients. Hence, the scope of this study is to evaluate the influence of the experimental boundary conditions on the derived diffusion coefficients. In addition, different methods for calculating diffusion coefficients are discussed. To elucidate such influences and to draw a line to practical application, the diffusion and trapping behavior in the creep resistant steel 7CrMoVTiB10 10 has been studied. For such purpose, hydrogen charged specimens were isothermally degassed at different temperatures using carrier gas hot extraction (CGHE). Based on experimental data, a numerical model has been developed by which the hydrogen transport behavior and the respective hydrogen distribution during CGHE can be assessed. It is demonstrated that the specimen heating rate has a large influence on the calculated diffusion coefficients under assumption of isothermal degassing which elsewhere has been underestimated in the assessment of diffusion data in creep-resistant steels. The numerical results suggest that calculation methods for diffusion coefficients are limited if compared to experimental results. It also turned out that the sample preparation time before CGHE can enormously influence determined diffusion coefficients. Consequently, non-homogeneous hydrogen concentration profiles have to be anticipated in the simulations to arrive at characteristic effusion curves consistent to respective CGHE experiments. In turn, validated diffusion coefficients are now available for the low-alloyed Cr-Mo-V steel, which can be helpful to calculate appropriate hydrogen removal heat treatment procedures. T2 - Project Meeting CAStLE CY - Colorado Springs, CO, USA DA - 07.09.2016 KW - Hydrogen KW - Diffusion Coefficient KW - Elevated Temperatures KW - Numerical Modeling KW - Carrier Gas Hot Extraction PY - 2016 AN - OPUS4-37408 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Münster, C. A1 - Mente, Tobias A1 - Rhode, Michael A1 - Böllinghaus, Thomas ED - Sommitsch, C. ED - Enzinger, N. ED - Mayr, P. T1 - Modelling of hydrogen diffusion in power station steels and influence of experimental conditions on the determination of diffusion coefficients N2 - In the field of modelling hydrogen assisted cracking (HAC) phenomenon, hydrogen diffusivity is an important input parameter for numerical simulation. In terms of hydrogen diffusion coefficients, they have great impact on realistic assessment of the evolution of possible crack critical hydrogen concentrations. In addition, the chemical compositions of steels can have a strong effect on hydrogen diffusion. Unfortunately, literature provides a wide range of available hydrogen diffusion coefficients even for similar microstructures and equal temperatures. The scattering of the data can lead to significant deviations in the results of simulating the evolving hydrogen concentrations due to hydrogen uptake (by fabrication or service). Thus, the application of such data to crack-models or for component life tie predictions can be realized up to the present only by considering envelope curves of such value, corresponding to a work or bench case scenario, respectively. For improved reliability of numerical simulaitons, it is necessary to minimize the mentioned deviation of these data. Hence, this work focuses on the validation of hydrogen diffusion coefficients obtained from permeation experiments at room temperature. Two baintic steels with different alloying concepts were investigated, the creep-resistant 7CrMoVTiB10-10 and the reactor pressure vessel grade 20MnMoNi4-5. A numerical model is presented for simulation of the corresponding hydrogen diffusion during permeation experiments using the finite element software ANSYS. Three different diffusion coefficients (obtained from different common calculation methods) are considered and compared to numerical results. The vases of thes calculation methods are permeation transients which are a direct measure for hydrogen. The results of the simulated hydrogen diffusion coefficients show that only one procedure for calculation of diffusion coefficitnes is suitable in comparision to the experimental values. Thus, it is suggested to use this method for analysis of experimental results in case of hydrogen diffusion during permeation experiments. Furthermore, this work supplies validated values for the hydrogen diffusion coefficients of both steel grades. KW - Hydrogen KW - Diffusion Coefficient KW - Numerical Simulation KW - Permeation KW - Creep-resistant Steel KW - Pressure Vessel Steel PY - 2016 SN - 978-3-85125-490-7 SN - 2410-0544 SP - 435 EP - 457 PB - Technische Universität Graz CY - Graz AN - OPUS4-38917 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Launert, B. A1 - Rhode, Michael A1 - Kromm, Arne A1 - Pasternak, H. A1 - Kannengießer, Thomas T1 - Measurement and numerical modeling of residual stresses in welded HSLA component-like I-girders N2 - The present contribution shows the residual stress results obtained from experiments with the sectioning method in comparison to global(structural) welding simulation models on component-like (i.e., large scale) I-girders made of structural steel grades S355 and S690QL. Plates were welded by conventional gas metal arc welding using two different heat inputs. In addition, the base material was assumed to be stress-free. Based on these results, conclusions and recommendations for the design of welded I-girders are drawn. T2 - IIW - Annual Assembly 2016 CY - Melbourne, Australia DA - 10.07.2016 KW - Residual Stresses KW - Microalloyed Steels KW - Girders KW - MAG Welding KW - Numerical Simulation PY - 2016 U6 - https://doi.org/10.1007/s40194-016-0413-x SN - 1878-6669 SN - 0043-2288 VL - 61 IS - 2 SP - 223 EP - 229 PB - Springer CY - Berlin, Heidelberg AN - OPUS4-38919 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -