TY - CONF A1 - Kromm, Arne A1 - Schasse, R. A1 - Xu, Ping A1 - Mente, Tobias A1 - Kannengießer, Thomas T1 - Influence of weld repair by gouging on the residual stresses in high strength steels N2 - Carbon arc-air gouging is a common technology when repairing defects in welded structures. Often this technique is applied in repeated cycles even on the same location of the joint. Due to the multiple heat input by gouging and subsequent re-welding, the residual stresses are strongly influenced. This can become crucial when microstructure and mechanical properties are adversely affected by multiple weld reparations. Knowledge about the relation of gouging and residual stresses is scarce but important when high strength steels, which are sensitive to residual stresses, are processed. The present study shows the effect of repair welding on a high strength steel structural element. The weld and the heat affected zone were subjected to multiple thermal cycles by gouging and subsequent repair welding. The residual stresses were determined by X-ray diffraction at different positions along the joint. The results showed that the residual stress level has increased by the repair cycles. This is most pronounced for the heat affected zone. Adapted welding procedures may prevent detrimental residual stress distributions. T2 - International Conference on Residual Stresses 10 CY - Sydney, Australia DA - 03.07.2016 KW - Repair welding KW - Residual stress KW - Carbon arc-air gouging PY - 2016 AN - OPUS4-36886 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Rhode, Michael A1 - Launert, B. A1 - Dixneit, Jonny A1 - Kannengießer, Thomas A1 - Pasternak, H. T1 - Combining sectioning method and x-ray diffraction for evaluation of residual stresses in welded high strength steel components N2 - Residual stresses and distortions in welded I-girders for steel construction are relevant when evaluating the stability of steel beams and column members. The application of high strength steels allows smaller wall thicknesses compared to conventional steels. Therefore, the risk of buckling has to be considered carefully. Due to the lack of knowledge concerning the residual stresses present after welding in high strength steel components conservative assumptions of their level and distribution is typically applied. In this study I-girders made of steels showing strengths of 355 MPa and 690 MPa were welded with varying heat input. Due to the dimension of the I-girders and the complex geometry the accessibility for residual stress measurement using X-ray diffraction was limited. Therefore, saw cutting accompanied by strain gauge measurement has been used to produce smaller sections appropriate to apply X-ray diffraction. The stress relaxation measured by strain gauges has been added to residual stresses determined by X-ray diffraction to obtain the original stress level and distribution before sectioning. The combination of both techniques can produce robust residual stress values. From practical point of view afford for strain gauge application can be limited to a number of measuring positions solely to record the global amount of stress relaxation. X-ray diffraction can be applied after sectioning to determine the residual stresses with sufficient spatial resolution. T2 - International Conference on Residual Stresses 10 CY - Sydney, Australia DA - 03.07.2016 KW - Residual stress KW - Sectioning method KW - X-ray diffraction PY - 2016 AN - OPUS4-36887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Dixneit, Jonny T1 - Observation of martensite formation by combined use of synchrotron diffraction and dilatometry N2 - Welding residual stress engineering by means of an adjusted martensite phase transformation would be highly attractive as detrimental tensile residual stresses may be prevented already during welding without time and cost intensive post processing. The present study shows a synchrotron diffraction analysis of a martensitic steel subjected to thermo-mechanical load cycles. Experiments were conducted regarding the microstructural strain response during the austenite to martensite transformation. The strains are a function of the temperature and the specific loads applied during cooling. The relation between the transformation plasticity of the material, the amount of martensite formed and the arising strains can thus be assessed. The lattice plane specific strains were compared to experimental findings from (macro) dilatation tests. It is shown that the microscopic material behavior differs remarkably from the one observed on the macroscopic scale, what leads to characteristic residual stresses in the material. T2 - Material Science & Technology (MS&T16) 3rd International Workshop of In-situ Studies with Photons, Neutrons and Electrons Scattering CY - Salt Lake City, UT, USA DA - 23.10.2016 KW - Residual stress KW - Martensite KW - Dilatometry KW - Synchrotron diffraction KW - Neutron diffraction PY - 2016 AN - OPUS4-37999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -