TY - CONF A1 - Markötter, Henning A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer embedded MOF N2 - Absorption edge tomography, also known as differential tomography at absorption edges, is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. Synchrotron radiation is the best source for absorption edge tomography, because of its small bandwidth, high intensity and easily adjustable photon energy. The synchrotron beamline BAMline at the synchrotron radiation facility BESSY II in Berlin, which is operated by the Bundesanstalt für Materialforschung und -prüfung (BAM), provides a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%, when the double multilayer monochromator is used. Together with the microtomography setup, this enables differential tomography with submicron resolution at the K edge of the elements from chromium up to the lanthanides, and up to uranium, when the L edges are used as well. In this work, metal organic frameworks (MOFs) embedded in polymer are characterized using differential tomography. MOFs are microporous structures of metal ions, coordinated by organic linker molecules, that can be used in a broad field of applications, especially in gas storage and catalysis. In this work, polymer embedded MOFs were extruded into filaments, which were subsequently used for 3d-printing to profit from the specific properties of the MOFs in polymeric materials combined with the arbitrary shapes provided by 3d-printing. For the extrusion, different polymer classes like ABS, polyester- and polyetherurethanes, as well as different MOFs (ZIF-8, ZIF-67, HKUST-1) were used to create MOF containing filaments with a nominal diameter of 3.0 mm. Differential tomography at the edges of the Zn, Co, and Cu was then used to find the distribution of the corresponding MOF in the filament and to analyze the shape of the inclusions. T2 - Beamline Jockey Workshop CY - Abingdon, Oxfordshire, UK DA - 19.02.2020 KW - Additive manufacturing KW - Absorption edge tomography KW - Metal organic framework KW - Synchrotron CT PY - 2019 AN - OPUS4-50350 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gollwitzer, Christian A1 - Scholz, Philipp A1 - Ulbricht, Alexander A1 - Joshi, Yogita A1 - Weidner, Steffen T1 - Synchrotron based absorption edge tomography for the analysis of 3D printed polymer MOF N2 - Absorption edge tomography is a method which exploits the sudden change of the attenuation coefficient, when the photon energy crosses the absorption edge of an element. The beamline BAM line at BESSY II, which is operated by the Federal Institute for Materials Research and Testing, can provide a monochromatized beam in a photon energy range from 5 keV up to 80 keV with a bandwidth of 2%. Together with the microtomography setup, this enables differential tomography sensitive to any element with N >= 24 (Cr) by using an appropriate K- or L-edge in this range. Here, a polymer filament embedding metal organic framework (MOF) was prepared and used for 3D printing. Absorption edge tomography at the copper K edge was employed to perform a non-destructive 3D characterization of the microstructure of the embedded MOF. Data fusion was then used to determine the size distribution of the embedded MOF. T2 - iCT 2019 CY - Padua, Italy DA - 12.02.2019 KW - Synchrotron tomography KW - BAMline KW - MOF KW - Absorption edge tomography PY - 2019 AN - OPUS4-47392 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -