TY - CONF A1 - Falkenhagen, Jana T1 - Characterization of co (polyamide)s N2 - Characterization problems of technically relevant copolyamides applying size exclusion chromatography, interaction chromatography and their combination with MALDI-TOF-MS will be discussed. T2 - 23. Kolloquium Massenspektrometrie und synthetische Polymere CY - Berlin, Germany DA - 14.05.2019 KW - LCCC KW - Mass spectrometry of polymers KW - SEC KW - LC / MALDI-TOF-MS coupling PY - 2019 AN - OPUS4-48221 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Kricheldorf, H.R. A1 - Scheliga, F. T1 - Cyclization and dispersity of poly(alkylene isophthalate)s N2 - Poly(alkylene isophthalate)s were prepared by different methods, either in solution or in bulk. The SEC measurements were evaluated in such a way that all oligomers were included. In solution (monomer conc. 0.1–0.7 mol/L) large fractions of rings were formed and high dispersities (up to 12) were obtained, which disagree with theoretical predictions. Polycondensations in bulk did neither generate cyclics by 'back-biting' nor by end-to-end cyclization, when the maximum temperature was limited to 210 °C. The dispersities of these perfectly linear polyesters were again higher than the theoretical values. Regardless of the synthetic method monomeric cycles were never observed. Furthermore, SEC measurements performed in tetrahydrofuran and in chloroform and SEC measurements performed in three different institutes were compared. Finally, SEC measurements of five samples were performed with universal calibration and a correction factor of 0.71 ± 0.02 was found for normal calibration with polystyrene. KW - Cyclization KW - Polycondensation KW - Polyesters KW - Size exclusion chromatography KW - Cyclics KW - Dispersity KW - SEC KW - Universal calibration KW - MALDI mass spectrometry PY - 2016 U6 - https://doi.org/10.1002/pola.27892 SN - 0360-6376 SN - 0887-624X VL - 54 IS - 1 SP - 197 EP - 208 PB - Wiley CY - Hoboken, NJ AN - OPUS4-33731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kricheldorf, H. R. A1 - Weidner, Steffen A1 - Scheliga, F. T1 - Cyclization and dispersity of polyesters N2 - Starting out from Flory`s most probable Distribution concept, correct and incorrect evaluations of SEC measurements are discussed. Using the correct mode, polyesters prepared by irreversible and reversible polycondensation methods were studied. Polyesters of α,ω−alkanediols and isophthalic acid or polyesters of diphenols and sebacic acid were prepared by three different irreversible polyconcensation methods. Formation of cyclic oligo and polyesters was monitored by MALDI-TOF mass spectrometry and dispersities were measured by SEC. The results are compared with the theories of Flory and Odian. Eqilibrated polyesters were prepared by reversible polycondensation of ethyl 6-hydroxycaproate or by alcohol-initiated ring-opening polymerization of ε-caprolactone. Various catalysts were compared. The influence of dilution and of di- or multifunctional initiators was evaluated. Furthermore, equilibrated polylactides were prepared from L- or meso-lactide at 120, 160 and 180°C. A fast even-odd equilibration was discovered in addition to reversible cyclization and intermolecular transesterification. The influence of these different equilibration mechanisms on the dispersity was investigated. The preparative and theoretical consequences are discussed. T2 - Polycondensation 2016 CY - Moscow, Russia DA - 11.09.2016 KW - Polyester KW - Cyclization KW - MALDI-TOF MS KW - SEC PY - 2016 AN - OPUS4-38365 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Falkenhagen, Jana A1 - Panne, Ulrich A1 - Hiller, W. A1 - Gruendling, T. A1 - Staal, B. A1 - Lang, C. A1 - Lamprou, A. T1 - Simultaneous characterization of poly(acrylic acid) andpolysaccharide polymers and copolymers N2 - Copolymer products that result from grafting acrylic acid and other hydrophilicmonomers onto polysaccharides have recently gained significant interest in researchand industry. Originating from renewable sources, these biodegradable, low toxicity,and polar copolymer products exhibit potential to replace polymers from fossil sourcesin several applications and industries. The methods usually employed to character-ize these copolymers are, however, quite limited, especially for the measurement ofbulk properties. With more sophisticated applications, for example, in pharmaceu-tics requiring a more detailed analysis of the chemical structure, we describe a newapproach for this kind of complex polymers. Our approach utilizes chromatographyin combination with several detection methods to separate and characterize reactionproducts of the copolymerization of acrylic acid and chemically hydrolyzed starch.These samples consisted of a mixture of homopolymer poly (acrylic acid), homopoly-mer hydrolyzed starch, and – in a lower amount – the formed copolymers. Several chro-matographic methods exist that are capable of characterizing either poly (acrylic acid)or hydrolyzed starch. In contrast, our approach offers simultaneous characterization ofboth polymers. The combination of LC and UV/RI offered insight into the compositionand copolymer content of the samples. Size exclusion chromatography experimentsrevealed the molar mass distribution of homopolymers and copolymers. FTIR inves-tigations confirmed the formation of copolymers while ESI-MS gave more details onthe end groups of hydrolyzed starches and poly (acrylic acids). Evidence of copolymerstructures was obtained through NMR measurements. Finally, two-dimensional chro-matography led to the separation of the copolymers from both homopolymers as wellas the additional separation of sodium clusters. The methods described in this work area powerful toolset to characterize copolymerization products of hydrolyzed starch andpoly(acrylic acid). Together, our approach successfully correlates the physicochemicalproperties of such complex mixtures with their actual composition. KW - 2D chromatography KW - LC-MS KW - SEC KW - Renewable copolymers KW - Grafting PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-508873 SP - 1 EP - 12 PB - Wiley-VCH Verlag-GmbH&Co. KGaA CY - Weinheim AN - OPUS4-50887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lahcini, M. A1 - Weidner, Steffen A1 - Oumayama, J. A1 - Scheliga, F. A1 - Kricheldorf, H. R. T1 - Unsaturated Copolyesters of Lactide N2 - Four classes of unsaturated copolyesters of L-lactide were prepared either from isosorbide or bis(hydroxymethyl)tricyclodecane in combination with fumaric acid or from 1,4-butenediol or 1,4- butynediol with terephthalic acid. All syntheses were performed in such a way that lactide was oligomerized with a diol as the initiator and the resulting oligomers were polycondensed with a dicarboxylic acid dichloride either in a one-pot synthesis or in a two-step procedure. For most copolyesters the SEC measurements gave weight average molecular weights in the range of 30–60 kg mol⁻1 and dispersities in the range of 4.2–6.2. The MALDI-TOF mass spectra displayed a high content of cycles and indicated an irreversible kinetic course of all polycondensations. Glass-transition temperatures (Tg) above 90 °C were only found for two copolyesters of isosorbide. Addition of bromine to copolyesters of 1,4-butenediol yielded flame retarding biodegradable polymers. KW - Copolyester KW - MALDI-TOF MS KW - SEC KW - Lactide PY - 2016 U6 - https://doi.org/10.1039/c6ra16008e VL - 2016/6 IS - 96 SP - 93496 EP - 93504 PB - Royal Society of Chemistry AN - OPUS4-37913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -