TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Yahyaoui, Hamza A1 - Kannengießer, Thomas ED - Duprez, Lode T1 - Hydrogen distribution in multi-layer welds of steel S960QL T2 - Proceedings of the Third International Conference on Metals & Hydrogen N2 - High-strength low-alloyed (HSLA) steels with yield strength ≥ 690 MPa have increasing importance in steel construction and civil engineering. However, weld processing of those steels is a major challenge. The susceptibility for degradation of mechanical properties of weld joints significantly increases in presence of hydrogen and can result in hydrogen assisted cracking (HAC). Generally, risk for HAC increases with increasing yield strength of HSLA steels. To minimize the incidence of HAC, it is essential to gain knowledge about both the (1) absorbed hydrogen amount and its distribution in the weld seam and (2) options to lower the amount of introduced hydrogen. Existing standards recommend heat treatment procedures (interpass temperature or post weld heat treatment) to reduce the diffusible hydrogen concentration in weldments. In this context, different weld seam geometries should be considered. For HSLA steel fabrication weld processing with seam opening angles of 45° to 60° is typical. Modern weld technologies allow welding with seam opening angles of 30° - reduced welding time and costs. In the present study, the hydrogen distribution in multi-layer welds of a 960 MPa HSLA steel was analysed. Influence of different seam opening angles as well as heat input, interpass temperature and post weld heat treatments were investigated. The welded samples were quenched in ice water immediately after welding and subsequently stored in liquid nitrogen. After defined warming up, small specimens were machined from the weld seam by water jet cutting. The diffusible hydrogen concentration was measured by carrier gas hot extraction with coupled mass spectrometer. The results showed, that low heat input and post weld heat treatment procedures can lower hydrogen concentrations in welds. Furthermore, a gradient of the hydrogen concentration was identified with increasing weld pool depth. By varying the seam opening angles different hydrogen concentrations were measured. T2 - Third International Conference on Metals & Hydrogen CY - Ghent, Belgium DA - 29.05.2018 KW - Hydrogen concentration KW - Welding KW - High-strength steel KW - Heat treatment KW - carrier gas hot extraction PY - 2018 SN - 978-9-08179-422-0 SP - P44 AN - OPUS4-45358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schaupp, Thomas A1 - Rhode, Michael A1 - Kannengießer, Thomas T1 - Influence of welding parameters on diffusible hydrogen content in high-strength steels using modified spray arc process N2 - In order to satisfy the growing requirements towards lightweight design and resource efficiency in modern steel constructions, e.g. mobile cranes and bridges, high-strength steels with typical yield strength ≥ 690 MPa are coming into use to an increasing extent. However, these steels require special treatment in welding. The susceptibility for degradation of the mechanical properties in presence of hydrogen increases significantly with increasing yield strength. In case of missing knowledge about how and which amount of hydrogen is uptaken during welding, hydrogen assisted cracking can be a negative consequence. Moreover, modern weld technology like the modified spray arc process enables welding of narrower weld seams. In this context, a reduced number of weld beads, volume and total heat input are technical and economic benefits. This work presents the influence of welding parameters on the diffusible hydrogen content in both (1) single-pass and (2) multi-layer welds. Different hydrogen concentrations were detected by varied contact tube distance, wire feed speed, arc length as well as varied arc type (transitional arc and modified spray arc). The results showed, that all welding parameters had significant influence on the diffusible hydrogen concentration in the single-pass welds. By increasing the number of weld beads in case of multi-layer welding, the hydrogen concentration have been substantially reduced. Whereby, differences in hydrogen concentrations between both arc types are present. T2 - IIW Intermediate Meeting: Commission II-A CY - Trollhättan, Sweden DA - 06.03.2017 KW - Hydrogen concentration KW - MAG Welding KW - High-strength steel KW - Welding parameters PY - 2017 AN - OPUS4-39396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -