TY - CONF A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Weinberger, J. A1 - Oesch, Tyler T1 - Influence of the pre-treatment of PP-fibres by means of electron irradiation on the spalling behaviour of High Strength Concrete N2 - It is known that the spalling risk of dense, high-strength concretes (HSC) can be reduced by the addition of polypropylene (PP) fibres and, in particular, PP-fibres that have been pre-treated using electron irradiation. It is presumed that the enhanced reduction in spalling resulting from electron irradiation pre-treatment of the fibres can be attributed to enhanced penetration of the molten fibre material into the micro-cracks around the fibres, due to their significantly decreased viscosity. So far there has been no experimental evidence for this. Against this background, this paper gives a com-parative analysis of the mode of action of PP-fibres with and without pre-treatment using multi-scale test methodology. Initially, fire tests on small-scale building components with accompanying damage monitoring veri-fied that the amount of PP-fibres can be halved by using pre-treated PP-fibres without reducing the fire performance of HSC. Detailed investigations of PP-fibres carried out in a completed research project funded by DFG (the German Research Foundation) using digital scanning calorimetry and thermogravimetry measurements (DSC/TG) as well as viscometer measurements showed that the pre-treatment has no significant influence on the melting temperature of the PP-fibres. However, a drastic reduction of the melt viscosity due to the electron irradiation was detectable. Additional dila-tation tests showed that the expansion behaviour of both fibre types and their melts do not differ significantly [1]. Rather, both fibre types generate high pressures when their thermal expansion is hindered. Further detailed investigations by means of continuous heating tests with a low heating rate were carried out on separately produced concrete cylinders. These tests showed that the pre-treatment of the PP-fibres causes earlier dehydration in conjunction with stagnation of thermal expansion of the concrete cylinders (temperature reduction from 180 °C to 170 °C). This is accompanied by in-creased acoustic emission activity during the thermal expansion tests. This leads to the assumption that the pre-treatment of PP-fibres results in earlier micro-crack development. However, it was not possible to confirm this assumption by microscopic examination of drilling cores with a diameter of 30 mm exposed to defined temperatures in the range between 150°C and 300°C. Microscopic obser-vations and additional X-ray 3D computed tomography (3D-CT) scans on miniaturised drilling cores exposed to temperature cycles showed a similar networking of fibre beds by means of micro-cracks in HSC for both fibre types. However, energy dispersive X-ray spectroscopy and wavelength disper-sive X-ray spectroscopy revealed fundamental differences in the penetration capacity of the fibre melts of the two fibre types. The increased penetration of the pre-treated PP-fibre melt revealed in these tests, confirms the initial working hypothesis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Polypropylene fibres KW - Explosive spalling KW - HSC KW - HPC KW - Fibre melt KW - Penetration KW - Micro cracking KW - NDT PY - 2017 AN - OPUS4-42974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Weise, Frank A1 - Stelzner, Ludwig A1 - Weinberger, J. A1 - Oesch, Tyler T1 - Influence of the pre-treatment of PP-fibres by means of electron irradiation on the spalling behaviour of High Strength Concrete N2 - It is known that the spalling risk of dense, high-strength concretes (HSC) can be reduced by the addition of polypropylene (PP) fibres and, in particular, PP-fibres that have been pre-treated using electron irradiation. It is presumed that the enhanced reduction in spalling resulting from electron irradiation pre-treatment of the fibres can be attributed to enhanced penetration of the molten fibre material into the micro-cracks around the fibres, due to their significantly decreased viscosity. So far there has been no experimental evidence for this. Against this background, this paper gives a com-parative analysis of the mode of action of PP-fibres with and without pre-treatment using multi-scale test methodology. Initially, fire tests on small-scale building components with accompanying damage monitoring veri-fied that the amount of PP-fibres can be halved by using pre-treated PP-fibres without reducing the fire performance of HSC. Detailed investigations of PP-fibres carried out in a completed research project funded by DFG (the German Research Foundation) using digital scanning calorimetry and thermogravimetry measurements (DSC/TG) as well as viscometer measurements showed that the pre-treatment has no significant influence on the melting temperature of the PP-fibres. However, a drastic reduction of the melt viscosity due to the electron irradiation was detectable. Additional dila-tation tests showed that the expansion behaviour of both fibre types and their melts do not differ significantly [1]. Rather, both fibre types generate high pressures when their thermal expansion is hindered. Further detailed investigations by means of continuous heating tests with a low heating rate were carried out on separately produced concrete cylinders. These tests showed that the pre-treatment of the PP-fibres causes earlier dehydration in conjunction with stagnation of thermal expansion of the concrete cylinders (temperature reduction from 180 °C to 170 °C). This is accompanied by in-creased acoustic emission activity during the thermal expansion tests. This leads to the assumption that the pre-treatment of PP-fibres results in earlier micro-crack development. However, it was not possible to confirm this assumption by microscopic examination of drilling cores with a diameter of 30 mm exposed to defined temperatures in the range between 150°C and 300°C. Microscopic obser-vations and additional X-ray 3D computed tomography (3D-CT) scans on miniaturised drilling cores exposed to temperature cycles showed a similar networking of fibre beds by means of micro-cracks in HSC for both fibre types. However, energy dispersive X-ray spectroscopy and wavelength disper-sive X-ray spectroscopy revealed fundamental differences in the penetration capacity of the fibre melts of the two fibre types. The increased penetration of the pre-treated PP-fibre melt revealed in these tests, confirms the initial working hypothesis. T2 - 5th International Workshop on Concrete Spalling due to Fire Exposure CY - Boras, Sweden DA - 12.10.2017 KW - Polypropylen fibres KW - Explosive spalling KW - HSC KW - HPC KW - Fibre melt KW - Penetration KW - Micro cracking KW - NDT PY - 2017 SN - 0284-5172 SP - 345 EP - 358 AN - OPUS4-42985 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Stelzner, Ludwig A1 - Powierza, Bartosz A1 - Oesch, Tyler A1 - Dlugosch, R. A1 - Weise, Frank T1 - Thermally-induced moisture transport in high-performance concrete studied by X-ray-CT and 1H-NMR N2 - The thermohydraulic damage mechanism is one of the primary causes for explosive spalling of highperformance concrete. This paper presents the spatially- and temporally-resolved analysis of the thermally-induced moisture transport and reconfiguration processes by means of X-ray-CT and 1HNMR. Thermal testing results for a high-performance concrete, which is sensitive to explosive spalling and which was prepared with and without added polypropylene fibres, are presented in this paper. These results indicate that the addition of fibres leads to a faster and deeper migration of the drying front and, thus, to a lower likelihood of vapour-pressure induced explosive spalling. KW - Explosive spalling KW - Thermally-induced moisture transport KW - X-ray-CT KW - 1H-NMR KW - High-performance concrete PY - 2019 U6 - https://doi.org/10.1016/j.conbuildmat.2019.07.065 SN - 0950-0618 VL - 224 SP - 600 EP - 609 PB - Elsevier Ltd. AN - OPUS4-48727 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -