TY - CONF A1 - Bresch, Sophie A1 - Stargardt, Patrick A1 - Töpfer, Jörg A1 - Moos, Ralf A1 - Mieller, Björn T1 - Thermoelectric multilayer generators: development from oxide powder to demonstrator N2 - Thermoelectric generators can be used for energy harvesting by directly transforming a temperature gradient into a voltage. Multilayer generators based on ceramic multilayer technology are an interesting alternative to conventional π-type generators. They exhibit several advantages like high filling factor, possibility of texturing, co-firing of all materials in one single-step, and reduction of production costs due to the high possible degree of automation. But, co-firing of promising oxide thermoelectric materials, Ca3Co4O9 (p-type) and CaMnO3 (n-type), is very challenging due to the large difference in sintering temperature (300 K). In this work we show the material development of Ca3Co4O9, CaMnO3, and insulation for multilayer generators co-fired under uniaxial pressure at 900 °C. The materials are tailored regarding their sintering behavior, electrical performance and coefficients of thermal expansion. Tape-casting and pressure assisted sintering are applied to fabricate textured Ca3Co4O9. Compared to conventional sintering, pressure assisted sintering increases the strength by the factor 10 and the power factor by the factor of 20. The combination of sintering additives and uniaxial pressure is used to decrease the sintering temperature of CaMnO3 to 900 °C while maintaining acceptable thermoelectric properties. Different generator designs (unileg and pn-type) were fabricated and analyzed regarding microstructure and thermoelectric performance. A lower level of complexity is beneficial for co-firing and performance. The unileg demonstrators reach 80% of the simulated output power and the power output is highly reproducible between the different demonstrators (99%). T2 - Ceramics in Europe 2022 CY - Krakow, Poland DA - 10.07.2022 KW - Thermoelectrics KW - Multilayer technology KW - Co-firing KW - Texture PY - 2022 AN - OPUS4-55357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -